1887

Abstract

The impact of mutations affecting microtubule-associated motor proteins on the morphology and cytology of hyphae of was studied. Two mutants, and -, deficient in dynein and dynactin, respectively, were examined by video-enhanced phase-contrast microscopy and image analysis. In contrast to the regular, morphology of wild-type hyphae, the hyphae of the mutants exhibited a great variety of distorted, non-hyphoid morphologies. The hyphae were slow-growing and manifested frequent loss of growth directionality. Cytoplasmic appearance, including organelle distribution and movement, were ostensibly different in the hyphae. The Spitzenkörper (Spk) of wild-type hyphae was readily seen by phase-contrast optics; the Spk of both and was less prominent and sometimes undetectable. Only the fast-growing hyphae displayed a Spk, and it was smaller and less phase-dark than the wild-type Spk. Growth rate in both wild-type and mutants was directly correlated with the size of the Spk. Spk efficiency, measured in terms of cell area generated per Spk travelled distance, was lower in mutants. Another salient difference between mutants and wild-type hyphae was in Spk trajectory. Whereas the Spk of wild-type hyphae maintained a trajectory close to the cell growth axis, the Spk of hyphae moved much more erratically. Sustained departures in the trajectory of the Spk produced corresponding distortions in hyphal morphology. A causal correlation between Spk trajectory and cell shape was tested with the Fungus Simulator program. The characteristic morphologies of wild-type or hyphae were reproduced by the Fungus Simulator, whose vesicle supply centre (VSC) was programmed to follow the corresponding Spk trajectories. This is evidence that the Spk controls hyphal morphology by operating as a VSC. These findings on dynein or dynactin deficiency support the notion that the microtubular cytoskeleton plays a major role in the formation and positioning of the Spk, with dramatic consequences on hyphal growth and morphogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1743
2000-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461743a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1743&mimeType=html&fmt=ahah

References

  1. Bartnicki, D. D., Gierz, G. & Bartnicki-Garcı́a, S. (1994). ‘‘Fungus Simulator’’: a Windows application to model fungal morphogenesis. In Abstracts of the 5th International Mycological Congress, Vancouver, Canada, p. 12.
  2. Bartnicki-Garcı́a, S. ( 1968; ). Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22, 87-107.[CrossRef]
    [Google Scholar]
  3. Bartnicki-Garcı́a, S. ( 1973; ). Fundamental aspects of hyphal morphogenesis. In Microbial Differentiation, pp. 245-267. Edited by J. M. Ashworth & J. E. Smith. Cambridge: Cambridge University Press.
  4. Bartnicki-Garcı́a, S. & Lippman, E. ( 1969; ). Fungal morphogenesis. Cell wall construction in Mucor rouxii. Science 165, 302-304.[CrossRef]
    [Google Scholar]
  5. Bartnicki-Garcı́a, S., Hergert, F. & Gierz, G. ( 1989; ). Computer simulation of fungal morphogenesis and the mathematical basis for (hyphal tip) growth. Protoplasma 153, 46-57.[CrossRef]
    [Google Scholar]
  6. Bartnicki-Garcı́a, S., Bartnicki, D. D., Gierz, G., López-Franco, R. & Bracker, C. E. ( 1995; ). Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp Mycol 19, 153-159.[CrossRef]
    [Google Scholar]
  7. Bourett, T. M. & Howard, R. J. ( 1991; ). Ultrastructural immunolocalization of actin in a fungus. Protoplasma 163, 199-202.[CrossRef]
    [Google Scholar]
  8. Bracker, C. E. ( 1995; ). The video-enhanced light microscope: a renaissance tool for quantitative live-cell microscopy. Zool Stud 34, 154-156.
    [Google Scholar]
  9. Bracker, C. E., Murphy, D. J. & López-Franco, R. (1997). Laser microbeam manipulation of cell morphogenesis in growing fungal hyphae. In Functional Imaging and Optical Manipulation of Living Cells, pp. 67–80. Edited by D. L. Farkas & B. J. Tromberg. Bellingham, WA: SPIE (International Society for Optical Engineering) (Proceedings of SPIE vol. 2893).
  10. Bruno, K. S., Tinsley, J. H., Minke, P. F. & Plamann, M. ( 1996; ). Genetic interactions among cytoplasmic dynein, dynactin, and nuclear distribution mutants of Neurospora crassa. Proc Natl Acad Sci USA 93, 4775-4780.[CrossRef]
    [Google Scholar]
  11. Garnjobst, L. & Tatum, E. L. ( 1967; ). A survey of new morphological mutants in Neurospora crassa. Genetics 57, 579-604.
    [Google Scholar]
  12. Gill, S. R., Schroer, T. A., Szilak, I., Steuer, E. R., Sheetz, M. P. & Cleveland, D. W. ( 1991; ). Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol 115, 1639-1650.[CrossRef]
    [Google Scholar]
  13. Girbardt, M. ( 1957; ). Der Spitzenkörper von Polystictus versicolor (L.). Planta 50, 47-59.[CrossRef]
    [Google Scholar]
  14. Girbardt, M. ( 1969; ). Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67, 413-441.[CrossRef]
    [Google Scholar]
  15. Gooday, G. W. ( 1983; ). The hyphal tip. In Fungal Differentiation, pp. 315-356. Edited by J. E. Smith. New York: Marcel Dekker.
  16. Gow, N. A. R. ( 1989; ). Control of the extension of the hyphal apex. Curr Top Med Mycol 3, 109-152.
    [Google Scholar]
  17. Grove, S. N. & Bracker, C. E. ( 1970; ). Protoplasmic organization of hyphal tips among fungi. J Bacteriol 104, 989-1009.
    [Google Scholar]
  18. Haimo, L. T. & Thaler, C. D. ( 1994; ). Regulation of organelle transport: lessons from color change in fish. BioEssays 16, 727-733.[CrossRef]
    [Google Scholar]
  19. Harold, F. M. ( 1990; ). To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol Rev 54, 381-431.
    [Google Scholar]
  20. Hasek, J. & Bartnicki-Garcı́a, S. ( 1994; ). The arrangement of F-actin and microtubules during germination of Mucor rouxii sporangiospores. Arch Microbiol 161, 363-369.[CrossRef]
    [Google Scholar]
  21. Heath, I. B. ( 1994; ). The cytoskeleton in hyphal growth, organelle movements, and mitosis. In The Mycota I: Growth, Differentiation and Sexuality, pp. 43-65. Edited by J. G. H. Wessels & F. Meinhardt. Berlin & Heidelberg: Springer.
  22. Hirokawa, N. ( 1982; ). Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94, 129-142.[CrossRef]
    [Google Scholar]
  23. Hirokawa, N. ( 1998; ). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526.[CrossRef]
    [Google Scholar]
  24. Hoch, H. C. & Staples, R. C. ( 1985; ). The microtubule cytoskeleton in hyphae of Uromyces phaseoli germlings: its relationship to the region of nucleation and to the F-actin cytoskeleton. Protoplasma 124, 112-122.[CrossRef]
    [Google Scholar]
  25. Hoffmann, J. & Mendgen, K. ( 1998; ). Endocytosis and membrane turnover in the germ tube of Uromyces fabae. Fungal Genet Biol 24, 77-85.[CrossRef]
    [Google Scholar]
  26. Howard, R. J. ( 1981; ). Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 48, 89-103.
    [Google Scholar]
  27. Howard, R. & Aist, J. R. ( 1977; ). Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D2O. Protoplasma 92, 195-210.[CrossRef]
    [Google Scholar]
  28. Howard, R. J. & Aist, J. R. ( 1980; ). Cytoplasmic microtubules and fungal morphogenesis: ultrastuctural effects of methyl benzimidazole-2-ylcarbamate determined by freeze-substitution of hyphal tip cells. J Cell Biol 87, 55-64.[CrossRef]
    [Google Scholar]
  29. Inoue, S., Turgeon, B. G., Yoder, O. C. & Aist, J. R. ( 1998; ). Role of fungal dynein in hyphal growth, microtubule organization, spindle pole body motility and nuclear migration. J Cell Sci 111, 1555-1566.
    [Google Scholar]
  30. Lehmler, C., Steinberg, G., Snetselaar, K. M., Schliwa, M., Kahmann, R. & Bölker, M. ( 1997; ). Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J 16, 3464-3473.[CrossRef]
    [Google Scholar]
  31. López-Franco, R. (1992). Organization and dynamics of the Spitzenkörper in growing hyphal tips. PhD dissertation, Purdue University, West Lafayette, IN.
  32. López-Franco, R. & Bracker, C. E. ( 1996; ). Diversity and dynamics of the Spitzenkörper in growing hyphal tips of higher fungi. Protoplasma 195, 90-111.[CrossRef]
    [Google Scholar]
  33. McClure, W. K., Park, D. & Robinson, P. M. ( 1968; ). Apical organization in the somatic hyphae of fungi. J Gen Microbiol 50, 177-182.[CrossRef]
    [Google Scholar]
  34. McKerracher, L. J. & Heath, I. B. ( 1987; ). Cytoplasmic migration and intracellular organelle movements during tip growth of fungal hyphae. Exp Mycol 11, 79-100.[CrossRef]
    [Google Scholar]
  35. Marsden, J. E., Tromba, A. J. & Weinstein, A. (1993). Basic Multivariable Calculus. New York: Springer.
  36. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. ( 1987; ). MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol 105, 1273-1282.[CrossRef]
    [Google Scholar]
  37. Plamann, M., Minke, P. F., Tinsley, J. H. & Bruno, K. S. ( 1994; ). Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J Cell Biol 127, 139-149.[CrossRef]
    [Google Scholar]
  38. Reiss, H. D. & Herth, W. ( 1979; ). Calcium gradients in tip growing plant cells visualized by chlorotetracycline fluorescence. Planta 146, 615-621.[CrossRef]
    [Google Scholar]
  39. Reynaga-Peña, C. G. & Bartnicki-Garcı́a, S. ( 1997; ). Apical branching in a temperature sensitive mutant of Aspergillus niger. Fungal Genet Biol 22, 153-167.[CrossRef]
    [Google Scholar]
  40. Riquelme, M., Reynaga-Peña, C. G., Gierz, G. & Bartnicki-Garcı́a, S. ( 1998; ). What determines growth direction in fungal hyphae? Fungal Genet Biol 24, 101-109.[CrossRef]
    [Google Scholar]
  41. Roberson, R. W. & Vargas, M. M. ( 1994; ). The tubulin cytoskeleton and its sites of nucleation in hyphal tips of Allomyces macrogynus. Protoplasma 182, 19-31.[CrossRef]
    [Google Scholar]
  42. Schroer, T. A. & Sheetz, M. P. ( 1991; ). Two activators of microtubule-based vesicle transport. J Cell Biol 115, 1309-1318.[CrossRef]
    [Google Scholar]
  43. Seiler, S., Nargang, F. E., Steinberg, G. & Schliwa, M. ( 1997; ). Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J 16, 3025-3034.[CrossRef]
    [Google Scholar]
  44. Seiler, S., Plamann, M. & Schliwa, M. ( 1999; ). Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Curr Biol 9, 779-785.[CrossRef]
    [Google Scholar]
  45. Sievers, A. ( 1963; ). Beteiligung des Golgi-Apparates bei der Bildung der Zellwand von Wurzelhaaren. Protoplasma 56, 188-192.[CrossRef]
    [Google Scholar]
  46. Steinberg, G. & Schliwa, M. ( 1996; ). Characterization of the biophysical and motility properties of kinesin from the fungus Neurospora crassa. J Biol Chem 271, 7516-7521.[CrossRef]
    [Google Scholar]
  47. Tinsley, J. H., Minke, P. F., Bruno, K. S. & Plamann, M. ( 1996; ). p150Glued, the largest subunit of the dynactin complex, is nonessential in Neurospora but required for nuclear distribution. Mol Biol Cell 7, 731-742.[CrossRef]
    [Google Scholar]
  48. Trinci, A. P. J. ( 1978; ). Wall and hyphal growth. Sci Prog 65, 75-79.
    [Google Scholar]
  49. Turian, G. ( 1978; ). The ‘‘Spitzenkörper’’, centre of the reducing power in the growing hyphal apices of two septomycetous fungi. Experientia 34, 1277-1279.[CrossRef]
    [Google Scholar]
  50. Vale, R. D., Reese, T. S. & Sheetz, M. P. ( 1985; ). Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39-50.[CrossRef]
    [Google Scholar]
  51. Vierula, P. J. ( 1996; ). The genetics of morphogenesis in Neurospora crassa. In Patterns in Fungal Development, pp. 87-104. Edited by S.-W. Chiu & D. Moore. Cambridge: Cambridge University Press.
  52. Vogel, H. J. ( 1956; ). A convenient growth medium for Neurospora (Medium N). Microb Genet Bull 13, 42-43.
    [Google Scholar]
  53. Wu, Q., Sandrock, T. M., Turgeon, B. G., Yoder, O. C., Wirsel, S. G. & Aist, J. R. ( 1998; ). A fungal kinesin required for organelle motility, hyphal growth, and morphogenesis. Mol Biol Cell 9, 89-101.[CrossRef]
    [Google Scholar]
  54. Xiang, X., Beckwith, S. M. & Morris, N. R. ( 1994; ). Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Science USA 91, 2100-2104.[CrossRef]
    [Google Scholar]
  55. Xiang, X., Roghi, C. & Morris, N. R. ( 1995; ). Characterization and localization of the cytoplasmic dynein heavy chain in Aspergillus nidulans. Proc Natl Acad Sci USA 92, 9890-9894.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1743
Loading
/content/journal/micro/10.1099/00221287-146-7-1743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error