1887

Abstract

In contrast to what happens in and , synthesis of periplasmic cyclic 1,2-β-glucan in spp. was not inhibited when bacteria were grown in media of high osmolarity. Studies performed with crude membrane preparations showed that cyclic 1,2-β-glucan synthetase of spp. was not inhibited by 05 M KCl or potassium glutamate; concentrations that completely inhibit the osmosensitive enzymes of A348 or 102F34, respectively encoded by the or genes. The cyclic 1,2-β-glucan synthetase gene () was introduced into A1011 and GRT21s mutants. Synthesis of cyclic 1,2-β-glucan by the recombinant strains was not inhibited when grown in media of high osmolarity (025 M NaCl or 05 M mannitol). On the other hand, when the cyclic 1,2-β-glucan synthetase gene was introduced into the GRT21s mutant, the recombinant strain displayed marked inhibition of cyclic 1,2-β-glucan synthesis when grown in high-osmolarity media. However, the same gene introduced into a mutant background resulted in no inhibition of glucan synthesis at high osmolarity. studies with crude membranes isolated from recombinant strains revealed that cyclic 1,2-β-glucan synthetase was not inhibited by high concentrations of KCl or potassium glutamate even when expressed in or backgrounds. It was concluded that the lack of effect of high osmolarity on 1,2-β-glucan synthesis in is due to two convergent mechanisms: a) the presence of a cyclic 1,2-β-glucan synthetase that is not affected by concentrations of solutes such as KCl or potassium glutamate and b) either the possible accumulation of compatible solutes that might protect the enzyme from the inhibition by potassium glutamate or the accumulation of other osmolytes that do not affect the 1,2-β-glucan synthetase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1735
2000-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461735a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1735&mimeType=html&fmt=ahah

References

  1. Altabe, S., Iñón de Iannino, N., de Mendoza, D. & Ugalde, R. A. ( 1990; ). Expression of the Agrobacterium tumefaciens chvB virulence region in Azospirillum spp. J Bacteriol 172, 2563-2567.
    [Google Scholar]
  2. Breedveld, M. W. & Miller, K. J. ( 1994; ). Cyclic β-glucans of members of family Rhizobiaceae. Microbiol Rev 58, 145-161.
    [Google Scholar]
  3. Breedveld, M. W. & Miller, K. J. ( 1995; ). Synthesis of glycerophosphorylated cyclic (1,2)-β-glucans in Rhizobium meliloti strain 1021 after osmotic shock. Microbiology 141, 583-588.[CrossRef]
    [Google Scholar]
  4. Breedveld, M. W., Zevenhuizen, L. P. T. M. & Zehnder, A. J. B. ( 1991; ). Osmotically-regulated trehalose accumulation and cyclic β-(1,2)-glucan excretion by Rhizobium leguminosarum biovar trifolii TA-1. Arch Microbiol 156, 501-506.
    [Google Scholar]
  5. Briones, G., Iñón de Iannino, N., Steinberg, M. & Ugalde, R. A. ( 1997; ). Periplasmic cyclic 1,2-β-glucan in Brucella spp. is not osmoregulated. Microbiology 143, 1115-1124.[CrossRef]
    [Google Scholar]
  6. Bundle, D. R., Cherwonogrodzky, J. W. & Perry, M. B. ( 1987; ). The structure of the lipopolysaccharide O-chain (M antigen) and polysaccharide B produced by Brucella melitensis 16M. FEMS Lett 216, 261-264.
    [Google Scholar]
  7. Bundle, D. R., Cherwonogrodzky, J. W. & Perry, M. B. ( 1988; ). Characterization of Brucella polysaccharide B. Infect Immun 56, 1101-1106.
    [Google Scholar]
  8. Cangelosi, G. A., Martinetti, G. & Nester, E. W. ( 1990; ). Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic β-1,2-glucan. J Bacteriol 172, 2172-2174.
    [Google Scholar]
  9. Castro, O. A., Zorreguieta, A., Ielmini, V., Vera, G. & Ielpi, L. ( 1996; ). Cyclic β-(1,2)-glucan synthesis in Rhizobiaceae: roles of the 319-kilodalton protein intermediate. J Bacteriol 178, 6043-6048.
    [Google Scholar]
  10. Csonka, L. N. ( 1991; ). Prokaryotic osmoregulation genetics and physiology. Annu Rev Microbiol 45, 569-606.[CrossRef]
    [Google Scholar]
  11. Dische, Z. ( 1962; ). General colour reactions. Methods Carbohydr Chem 1, 478-492.
    [Google Scholar]
  12. Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. R. ( 1980; ). Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77, 7347-7351.[CrossRef]
    [Google Scholar]
  13. Douglas, C. J., Staneloni, R. J., Rubin, R. A. & Nester, E. W. ( 1985; ). Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulent region. J Bacteriol 161, 850-860.
    [Google Scholar]
  14. Dylan, T., Ielpi, L., Stanfield, S., Kashyap, L., Douglas, C., Yanofsky, M., Nester, E. W., Helinski, D. R. & Ditta, G. ( 1986; ). Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83, 4404-4407.
    [Google Scholar]
  15. Dylan, T., Helinski, D. R. & Ditta, G. ( 1990; ). Hypoosmotic adaptation in Rhizobium meliloti requires beta-(1–2) glucan. J Bacteriol 172, 1400-1408.
    [Google Scholar]
  16. Geremı́a, R. A., Cavaignac, S., Zorreguieta, A., Toro, N., Olivares, J. & Ugalde, R. A. ( 1987; ). A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form β-(1–2) glucan. J Bacteriol 169, 880-884.
    [Google Scholar]
  17. Ingram-Smith, Ch. & Miller, K. J. ( 1998; ). Effects of ionic and osmotic strength on the glucosyltransferase of Rhizobium meliloti responsible for cyclic β-(1,2)-glucan biosynthesis. Appl Environ Microbiol 64, 1290-1297.
    [Google Scholar]
  18. Iñón de Iannino, N. & Ugalde, R. A. ( 1989; ). Biochemical characterization of avirulent Agrobacterium tumefaciens chvA mutants: synthesis and excretion of 1,2-β-glucan. J Bacteriol 171, 2842-2849.
    [Google Scholar]
  19. Iñón de Iannino, N., Briones, G., Tolmasky, M. & Ugalde, R. A. ( 1998; ). Molecular cloning and characterization of cgs, the Brucella abortus cyclic 1,2-β-glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J Bacteriol 180, 4392-4400.
    [Google Scholar]
  20. Lucht, J. M. & Bremer, E. ( 1994; ). Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol Rev 14, 3-30.[CrossRef]
    [Google Scholar]
  21. Miller, K. J. & Wood, J. M. ( 1996; ). Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50, 101-136.[CrossRef]
    [Google Scholar]
  22. Puvanesarajah, V., Schell, F. M., Stacey, G., Douglas, C. J. & Nester, E. W. ( 1985; ). Role for 2-linked β-d-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol 164, 102-106.
    [Google Scholar]
  23. Rumley, M. K., Therisod, H., Weissborn, A. C. & Kennedy, E. P. ( 1992; ). Mechanism of regulation of the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Biol Chem 267, 11806-11810.
    [Google Scholar]
  24. Smith, L. D. & Ficht, T. A. ( 1990; ). Pathogenesis of Brucella. Crit Rev Microbiol 17, 209-230.[CrossRef]
    [Google Scholar]
  25. Soto, M. J., Lepek, V., Olivares, J. & Toro, N. ( 1993; ). Accumulation of cell-associated β(1–2)-glucan in Rhizobium meliloti strain GR4 in response to osmotic potential. Mol Plant-Microbe Interact 5, 288-293.
    [Google Scholar]
  26. Wang, P., Ingram-Smith, Ch., Hadley, J. A. & Miller, K. J. ( 1999; ). Cloning, sequencing and characterization of the cgmB gene of Sinorhizobium meliloti involved in cyclic β-glucan biosynthesis. J Bacteriol 181, 4576-4583.
    [Google Scholar]
  27. Zorreguieta, A. & Ugalde, R. A. ( 1986; ). Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in β-d-(1,2) glucan synthesis. J Bacteriol 167, 947-951.
    [Google Scholar]
  28. Zorreguieta, A., Cavaignac, S., Geremia, R. A. & Ugalde, R. A. ( 1990; ). Osmotic regulation of 1,2-β-glucan synthesis in members of the family Rhizobiaceae. J Bacteriol 172, 4701-4704.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1735
Loading
/content/journal/micro/10.1099/00221287-146-7-1735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error