1887

Abstract

Vancomycin resistance in results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of TKL-10 that requires D-Ala for growth at 42 °C was used as host for transformation experiments using plasmids containing the full-length from or the alanine racemase gene () of : both plasmids were able to complement TKL-10 at 42 °C. No alanine or serine racemase activities were detected in the host strain TKL-10 grown at 30, 34 or 37 °C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of TKL-10/pCA4(): the alanine racemase activity of VanT was 14% of the serine racemase activity in both TKL-10/pCA4() and XL-1 Blue/pCA4(). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of TKL-10/pJW40(), with a trace (16%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1727
2000-07-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461727a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1727&mimeType=html&fmt=ahah

References

  1. Amann E., Brosius J.. 1985; ‘ATG Vectors’ for regulated high-level expression of cloned genes in Escherichia coli. Gene40:183–190[CrossRef]
    [Google Scholar]
  2. Arias C. A., Martı́n-Martinez M., Blundell T. L., Arthur M., Courvalin P., Reynolds P. E.. 1999; Characterization and modelling of VanT, a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174. Mol Microbiol31:1653–1664[CrossRef]
    [Google Scholar]
  3. Arias C. A., Courvalin P., Reynolds P. E.. 2000; The vanC gene cluster of Enterococcus gallinarum BM4174. Antimicrob Agents Chemother44:1660–1666[CrossRef]
    [Google Scholar]
  4. Billot-Klein D., Gutmann L., Sable S., Guitet E., van Heijenoort J.. 1994a; Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides and Enterococcus gallinarum. J Bacteriol176:2398–2405
    [Google Scholar]
  5. Billot-Klein D., Blanot D., Gutmann L., van Heijenoort J.. 1994b; Association constants for the binding of vancomycin and teicoplanin to N-acetyl-d-alanyl-d-alanine and N-acetyl-d-alanyl-d-serine. Biochem J304:1021–1022
    [Google Scholar]
  6. Blackwell J. R., Horgan R.. 1991; A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett295:10–12[CrossRef]
    [Google Scholar]
  7. Blattner F. R., Burland V., Plunkett G., Sofia H. J., Daniels D. L.. 1993; Analysis of the Escherichia coli genome. 4. DNA sequence of the region from 89·2 to 92·8 minutes. Nucleic Acids Res21:5408–5417[CrossRef]
    [Google Scholar]
  8. Bradford M. M.. 1976; A rapid and sensitive method for rapid quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  9. Bullock W. O., Fernandez J. M., Short J. M.. 1987; XL-1 Blue: a high-efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques5:376
    [Google Scholar]
  10. Corrigan J. J., Srinivasan N. G.. 1966; The occurrence of certain d-amino acids in insects. Biochemistry4:1185–1190
    [Google Scholar]
  11. Cosloy S. D., McFall E.. 1973; Metabolism of d-serine in Escherichia coli K-12: mechanism of growth inhibition. J Bacteriol114:685–694
    [Google Scholar]
  12. Dowhan W. Jr, Snell E. E.. 1970; d-Serine dehydratase from Escherichia coli. II. Analytical studies and subunit structure. J Biol Chem245:4618–4628
    [Google Scholar]
  13. Eidlic L., Neidhart F. C.. 1965; Protein and nucleic acid synthesis in two mutants of Escherichia coli with temperature-sensitive aminoacyl ribonucleic acid synthetases. J Bacteriol89:706–711
    [Google Scholar]
  14. Esaki N., Walsh C. T.. 1986; Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. Biochemistry25:3261–3267[CrossRef]
    [Google Scholar]
  15. Friedman M.. 1991; Formation, nutritional value, and safety of amino acids. In Nutritional and Toxicological Consequences of Food Processing pp.447–481 New York: Plenum;
    [Google Scholar]
  16. Greene P. J., Maley F., Pedersen-Lane J., Santi D. V.. 1993; Catalytically active cross-species heterodimers of thymidylate synthase. Biochemistry32:10283–10288[CrossRef]
    [Google Scholar]
  17. Gutnick D., Calvo J. M., Klopotowski T., Ames B. N.. 1969; Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J Bacteriol100:215–219
    [Google Scholar]
  18. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  19. Lobocka M., Hennig J., Wild J., Klopotowski T.. 1994; Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of d-amino acid dehydrogenase and the catabolic alanine racemase. J Bacteriol176:1500–1510
    [Google Scholar]
  20. McFall E., Newman E. B.. 1996; Amino acids as carbon sources. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp.358–379Edited by Neidhart F. C..others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Messer J., Reynolds P. E.. 1992; Modified peptidoglycan precursors produced by glycopeptide-resistant enterococci. FEMS Microbiol Lett94:195–200[CrossRef]
    [Google Scholar]
  22. Matsui T., Sekiguchi M., Hashimoto A., Tomita U., Nishikawa T., Wada K.. 1995; Functional comparison of d-serine and glycine in rodents – the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem65:454–458
    [Google Scholar]
  23. Norrander J., Kempe T., Messing J.. 1983; Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene26:101–106[CrossRef]
    [Google Scholar]
  24. Osterman A., Grishin N. V., Kinch L. N., Phillips M. A.. 1994; Formation of functional cross-species heterodimers of ornithine decarboxylase. Biochemistry33:13662–13667[CrossRef]
    [Google Scholar]
  25. Park I. S., Chung-Hung L., Walsh C. T.. 1997; Bacterial resistance to vancomycin: overproduction, purification and characterization of VanC-2 from Enterococcus casseliflavus as a d-Ala:d-Ser ligase. Proc Natl Acad Sci USA94:10040–10044[CrossRef]
    [Google Scholar]
  26. Reynolds P. E.. 1989; Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis8:943–950[CrossRef]
    [Google Scholar]
  27. Reynolds P. E., Snaith H. A., Maguire A. J., Dutka-Malen S., Courvalin P.. 1994; Analysis of peptidoglycan precursors in vancomycin-resistant Enterococcus gallinarum BM4174. Biochem J301:5–8
    [Google Scholar]
  28. Reynolds P. E., Arias C. A., Courvalin P.. 1999; Gene vanXY C encodes both dd-dipeptidase (VanX) and dd-carboxypeptidase (VanY) activities in vancomycin-resistant Enterococcus gallinarum BM4174. Mol Microbiol36:341–349
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Shaw J. P., Petsko G. A., Ringe D.. 1997; Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1·9-Å resolution. Biochemistry36:1329–1342[CrossRef]
    [Google Scholar]
  31. Sun A. Q., Yuksel K. U., Gracet R. W.. 1992; Interactions between the catalytic centers and subunit interface of triosephosphate isomerase probed by refolding, active-site modification, and subunit exchange. J Biol Chem267:20168–20174
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680[CrossRef]
    [Google Scholar]
  33. Truniger V., Boos W.. 1994; Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydrogenase. J Bacteriol176:1796–1800
    [Google Scholar]
  34. Uo T., Yoshimura T., Shimizu S., Esaki N.. 1998; Occurrence of pyridoxal 5′-phosphate-dependent serine racemase in silkworm, Bombyx mori. Biochem Biophys Res Commun246:31–34[CrossRef]
    [Google Scholar]
  35. Walsh C. T.. 1989; Enzymes in the d-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem264:2393–2396
    [Google Scholar]
  36. Wasserman S. A., Walsh C. T., Botstein D.. 1983; Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol153:1439–1450
    [Google Scholar]
  37. Wijsman H. J. W.. 1972; The characterization of an alanine racemase mutant of Escherichia coli. Genet Res20:269–277[CrossRef]
    [Google Scholar]
  38. Wild J., Lobocka M., Walczak W., Klopotowski T.. 1985; Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K-12. Mol Gen Genet198:315–322[CrossRef]
    [Google Scholar]
  39. Wolosker H., Shieth K. N., Takahashi M., Mothet J., Brady R. O. Jr, Ferris C. D., Snyder S. H.. 1999a; Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA96:721–725[CrossRef]
    [Google Scholar]
  40. Wolosker H., Blackshaw S., Snyder S. H.. 1999b; Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA96:13409–13414[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1727
Loading
/content/journal/micro/10.1099/00221287-146-7-1727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error