1887

Abstract

TA441 degrades phenol by a -cleavage pathway after the occurrence of a spontaneous mutation that derepresses the operon encoding phenol hydroxylase and catechol 2,3-dioxygenase, the enzymes for the initial two steps of the degradation pathway. A gene cluster, , encoding the -pathway enzymes for degradation of 2-hydroxymuconic semialdehyde (HMS) to TCA cycle intermediates was found downstream of the operon. The upstream operon and the downstream gene cluster were found to be separated by two open reading frames of unknown function and an oppositely oriented gene, which is similar to regulatory genes for -cleavage of catechol or chlorinated catechols. A promoter assay using an :: transcriptional fusion plasmid revealed that the promoter activity is induced by both phenol and HMS. The phenol-dependent induction was mediated by AphR and the HMS-dependent induction was mediated by AphT. The promoter in strain TA441 was not silenced, unlike the cases of the and promoters, and was highly induced by HMS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1707
2000-07-01
2024-09-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461707a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1707&mimeType=html&fmt=ahah

References

  1. Arai H., Akahira S., Ohishi T., Maeda M., Kudo T. 1998; Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144:2895–2903 [CrossRef]
    [Google Scholar]
  2. Arai H., Akahira S., Ohishi T., Kudo T. 1999a; Adaptation of Comamonas testosteroni TA441 to utilization of phenol by spontaneous mutation of the gene for a trans-acting factor. Mol Microbiol 33:1132–1140
    [Google Scholar]
  3. Arai H., Yamamoto T., Ohishi T., Shimizu T., Nakata T., Kudo T. 1999b; Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway from Comamonas testosteroni TA441. Microbiology 145:2813–2820
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Coco W. M., Rothmel R. K., Henikoff S., Chakrabarty A. M. 1993; Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. J Bacteriol 175:417–427
    [Google Scholar]
  6. Daniel R., Stuertz K., Gottschalk G. 1995; Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. J Bacteriol 177:4392–4401
    [Google Scholar]
  7. Erickson B. D., Mondello F. J. 1992; Nucleotide sequencing and transcriptional mapping of genes encoding biphenyl dioxygenase, a multicomponent PCB-degrading enzyme in Pseudomonas strain LB400. J Bacteriol 174:2903–2912
    [Google Scholar]
  8. Frantz B., Chakrabarty A. M. 1987; Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc Natl Acad Sci USA 84:4460–4464 [CrossRef]
    [Google Scholar]
  9. Grimm A. C., Harwood C. S. 1999; NahY, a catabolic plasmid-encoding receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316
    [Google Scholar]
  10. Harayama S., Rekik M. 1990; The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes. Mol Gen Genet 221:113–120 [CrossRef]
    [Google Scholar]
  11. Harayama S., Rekik M., Ngai K.-L., Ornston L. N. 1989; Physically associated enzymes produce and metabolize 2-hydroxypent-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida. J Bacteriol 171:6251–6258
    [Google Scholar]
  12. Lau P. C., Bergeron H., Labbe D., Wang Y., Brousseau R., Gibson D. T. 1994; Sequence and expression of the todGIH genes involved in the last three steps of toluene degradation by Pseudomonas putida F1. Gene 146:7–13 [CrossRef]
    [Google Scholar]
  13. Lodge J., Williams R., Bell A., Chan B., Busby S. 1990; Comparison of promoter activities in Escherichia coli and Pseudomonas aeruginosa: use of a new broad-host-range promoter-probe plasmid. FEMS Microbiol Lett 67:221–226 [CrossRef]
    [Google Scholar]
  14. McFall S. M., Parsek M. R., Chakrabarty A. M. 1997; 2-Chloromuconate and ClcR-mediated activation of the clcABC operon: in vitro transcriptional and DNase I footprint analyses. J Bacteriol 179:3655–3663
    [Google Scholar]
  15. McMillan D. J., Mau M., Walker M. J. 1998; Characterisation of the urease gene cluster in Bordetella bronchiseptica. Gene 208:243–251 [CrossRef]
    [Google Scholar]
  16. Mars A. E., Kingma J., Kaschabek S. R., Reineke W., Janssen D. B. 1999; Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J Bacteriol 181:1309–1318
    [Google Scholar]
  17. van der Meer J. R., Eggen R. I., Zehnder A. J., de Vos W. M. 1991a; Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol 173:2425–2434
    [Google Scholar]
  18. van der Meer J. R., Frijters A. C., Leveau J. H., Eggen R. I., Zehnder A. J., de Vos W. M. 1991b; Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J Bacteriol 173:3700–3708
    [Google Scholar]
  19. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Möbus E., Jahn M., Schmid R., Jahn D., Maser E. 1997; Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. J Bacteriol 179:5951–5955
    [Google Scholar]
  21. Parales R. E., Ontl T. A., Gibson D. T. 1997; Cloning and sequence analysis of a catechol 2,3-dioxygenase gene from the nitrobenzene-degrading strain Comamonas sp. JS765. J Ind Microbiol Biotechnol 19:385–391 [CrossRef]
    [Google Scholar]
  22. Parsek M. E., Shinabarger D. L., Rothmel R. K., Chakrabarty A. M. 1992; Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida. J Bacteriol 174:7798–7806
    [Google Scholar]
  23. Powlowski J., Shingler V. 1994; Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5:219–236 [CrossRef]
    [Google Scholar]
  24. Rothmel R. K., Aldrich T. L., Houghton J. E., Coco W. M., Ornston L. N., Chakrabarty A. M. 1990; Nucleotide sequencing and characterization of Pseudomonas putida catR: a positive regulator of the catBC operon is a member of the lysR family. J Bacteriol 172:922–931
    [Google Scholar]
  25. Salomone J.-Y., Crouzet P., De Ruffray P., Otten L. 1996; Characterization and distribution of tartrate utilization genes in the grapevine pathogen Agrobacterium vitis. Mol Plant–Microbe Interact 9:401–408 [CrossRef]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Shingler V. 1996; Metabolic and regulatory check points in phenol degradation by Pseudomonas sp. CF600. In Molecular Biology of Pseudomonas pp. 153–154Edited by Nakazawa T., Furukawa K., Haas D., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Shingler V., Powlowski J., Marklund U. 1992; Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol 174:711–724
    [Google Scholar]
  29. Shingler V., Bartilson M., Moore T. 1993; Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J Bacteriol 175:1596–1604
    [Google Scholar]
  30. Simon R. 1984; High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420 [CrossRef]
    [Google Scholar]
  31. Streber W. R., Timmis K. N., Zenk M. H. 1987; Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacteriol 169:2950–2955
    [Google Scholar]
  32. Valentin H. E., Zwingmann G., Schonebaum A., Steinbüchel A. 1995; Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus. Eur J Biochem 227:43–60 [CrossRef]
    [Google Scholar]
  33. Wigmore H. J., Bayly R. C., Berardino D. 1974; Pseudomonas putida mutants defective in metabolism of the products of meta-fission of catechol and its methyl analogues. J Bacteriol 120:31–37
    [Google Scholar]
  34. Yrjälä K., Paulin L., Romantschuk M. 1997; Novel organization of catechol meta-pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol Lett 154:403–408 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-146-7-1707
Loading
/content/journal/micro/10.1099/00221287-146-7-1707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error