Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria Free

Abstract

PCR primer sets for the 16S rRNA gene of six phylogenetic groups of sulfate-reducing bacteria (SRB) were designed. Their application in conjunction with group-specific internal oligonucleotide probes was used to detect SRB DNA in samples of landfill leachate. Six generic/suprageneric groups could be differentiated: ; ; ; ; ; . The predicted specificities of the PCR primer and oligonucleotide probe combinations were confirmed with DNA from reference strains. In all cases, the PCR primers and probes were specific, the only exception being that the (group 5) PCR primers were able to amplify DNA from (group 3) reference strains but these groups could nevertheless be differentiated with the internal oligonucleotide probes. The proliferation of SRB in landfill sites interferes with methanogenesis and waste stabilization, but relatively little is known about the composition of SRB populations in this environment. DNA was extracted from samples of landfill leachate from several municipal waste landfill sites and used as template in PCR reactions with SRB group-specific primer sets. Group-specific oligonucleotide probes were then used to confirm that the PCR products obtained contained the target SRB 16S rDNA. Both ‘direct’ and ‘nested’ PCR protocols were used to amplify SRB 16S rDNA from landfill leachates. Three of the six SRB groups could be detected using the ‘direct’ PCR approach (, and ). When ‘nested’ PCR was applied, an additional two groups could be detected ( and ). Only could not be detected in any leachate samples using either direct or nested PCR. The SRB-specific 16S rDNA primers and probes described here can be applied to investigations of SRB molecular ecology in general, and can be further developed for examining SRB population composition in relation to landfill site performance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1693
2000-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461693a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1693&mimeType=html&fmt=ahah

References

  1. Amann R. I., Binder B. J., Olsen R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  2. Bak F., Pfennig N. 1991a; Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiol Ecol 85:31–42 [CrossRef]
    [Google Scholar]
  3. Bak F., Pfennig N. 1991b; Sulfate-reducing bacteria in littoral sediment of Lake Constance. FEMS Microbiol Ecol 85:43–52 [CrossRef]
    [Google Scholar]
  4. Barlaz M. A. 1997; Microbial studies of landfills and anaerobic refuse decomposition. In Manual of Environmental Microbiology pp. 541–557Edited by Hurst C. J., Knudsen G. R., McInerney M. J., Stetzenbach L. D., Walter M. V. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Beeman R. E., Suflita J. M. 1987; Microbial ecology of a shallow unconfined ground water aquifer polluted by municipal landfill leachate. Microb Ecol 14:39–54 [CrossRef]
    [Google Scholar]
  6. Devereux R., Delaney M., Widdel F., Stahl D. A. 1989; Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171:6689–6695
    [Google Scholar]
  7. Devereux R., Kane M. D., Winfrey J., Stahl D. A. 1992; Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst Appl Microbiol 15:601–609 [CrossRef]
    [Google Scholar]
  8. Devereux R., Hines M. E., Stahl D. A. 1996a; S cycling: characterization of natural communities of sulfate-reducing bacteria by 16s rRNA sequence comparisons. Microb Ecol 32:283–292
    [Google Scholar]
  9. Devereux R., Winfrey M. R., Winfrey J., Stahl D. A. 1996b; Depth profile of sulfate-reducing bacterial ribosomal RNA and mercury methylation in an estuarine sediment. FEMS Microbiol Ecol 20:23–31 [CrossRef]
    [Google Scholar]
  10. Edwards U., Rogall T., Blocker H., Emde M., Bottger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853 [CrossRef]
    [Google Scholar]
  11. Fauque G. D. 1995; Ecology of sulfate-reducing bacteria. In Sulfate-reducing Bacteria pp. 217–241Edited by Barton Larry L. New York: Plenum;
    [Google Scholar]
  12. Felsenstein J. 1993 phylip – Phylogeny Inference Package Version 3.5c Seattle: Department of Genetics, University of Washington;
    [Google Scholar]
  13. Fowler V. J., Widdel F., Pfennig N., Woese C. R., Stackebrandt E. 1986; Phylogenetic relationships of sulfate- and sulfur-reducing eubacteria. Syst Appl Microbiol 8:32–41 [CrossRef]
    [Google Scholar]
  14. Gurijala K. R., Suflita J. M. 1993; Environmental factors influencing methanogenesis from refuse in landfill samples. Environ Sci Technol 27:1176–1181 [CrossRef]
    [Google Scholar]
  15. Harvey R. W., Suflita J. M., McInerney M. J. 1997; Overview of issues in subsurface and landfill microbiology. In Manual of Environmental Microbiology pp. 523–525Edited by Hurst C. J., Knudsen G. R., McInerney M. J., Stetzenbach L. D., Walter M. V. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Jones J. G., Simon B. M. 1984; The presence and activity of Desulfotomaculum spp. in sulphate-limited freshwater sediments. FEMS Microbiol Lett 21:47–50 [CrossRef]
    [Google Scholar]
  17. Jorgensen B. B. 1982; Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296:643–645 [CrossRef]
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  19. Kane M. D., Poulsen L. K., Stahl D. A. 1993; Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59:682–686
    [Google Scholar]
  20. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J. P., Schmidt T. M., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408
    [Google Scholar]
  21. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–110 [CrossRef]
    [Google Scholar]
  22. Manz W., Eisenbrecher M., Neu T. R., Szewzyk U. 1998; Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol 25:43–61 [CrossRef]
    [Google Scholar]
  23. Oremland R. S., Polcin S. 1982; Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276
    [Google Scholar]
  24. Postgate J. R. 1984 The Sulphate Reducing Bacteria, 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  25. Purdy K. J., Nedwell D. B., Embley T. M., Takii S. 1997; Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary. FEMS Microbiol Ecol 24:221–234 [CrossRef]
    [Google Scholar]
  26. Ramsing N. B., Kuhl M., Jorgensen B. B. 1993; Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59:3840–3849
    [Google Scholar]
  27. Raskin L., Rittman B. E., Stahl D. A. 1996; Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Appl Environ Microbiol 62:3847–3857
    [Google Scholar]
  28. Risatti J. B., Capman W. C., Stahl D. A. 1994; Community structure of a microbial mat: the phylogenetic dimension. Proc Natl Acad Sci USA 91:10173–10177 [CrossRef]
    [Google Scholar]
  29. Rooney-Varga J. N., Devereux R., Evans R. S., Hines M. E. 1997; Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 63:3895–3901
    [Google Scholar]
  30. Sahm K., MacGregor B. J., Jorgensen B. B., Stahl D. A. 1999; Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ Microbiol 1:65–74 [CrossRef]
    [Google Scholar]
  31. Suflita J. M., Gerba C. P., Ham R. K., Palmisano A. C., Rathje W. L., Robinson J. A. 1992; The world’s largest landfill – a multidisciplinary investigation. Environ Sci Technol 26:1486–1494 [CrossRef]
    [Google Scholar]
  32. Trimmer M., Purdy K. J., Nedwell D. B. 1997; Process measurement and phylogenetic analysis of the sulfate-reducing bacterial communities of two contrasting benthic sites in the upper estuary of the Great Ouse, Norfolk, U.K. FEMS Microbiol Ecol 24:333–342 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1693
Loading
/content/journal/micro/10.1099/00221287-146-7-1693
Loading

Data & Media loading...

Most cited Most Cited RSS feed