Genetic diversity of as assessed by PCR-RFLP of the gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision

The GenBank accession numbers for the sequences determined in this work are AF207891–AF207897.

Free

Abstract

The genetic diversity among strains in a worldwide collection of , causal agent of bacterial wilt, was assessed by using three different molecular methods. PCR-RFLP analysis of the gene region was extended from previous studies to include additional strains and showed that five amplicons were produced not only with all strains but also with strains of the closely related bacteria and the blood disease bacterium (BDB). However, the three bacterial taxa could be discriminated by specific restriction profiles. The PCR-RFLP clustering, which agreed with the biovar classification and the geographical origin of strains, was confirmed by AFLP. Moreover, AFLP permitted very fine discrimination between different isolates and was able to differentiate strains that were not distinguishable by PCR-RFLP. AFLP and PCR-RFLP analyses confirmed the results of previous investigations which split the species into two divisions, but revealed a further subdivision. This observation was further supported by 16S rRNA sequence data, which grouped biovar 1 strains originating from the southern part of Africa.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1679
2000-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461679a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1679&mimeType=html&fmt=ahah

References

  1. Aarts H. J. M., Van Lith L. A. J. T., Keijer J. 1998; High-resolution genotyping of Salmonella strains by AFLP-fingerprinting. Lett Appl Microbiol 26:131–135 [CrossRef]
    [Google Scholar]
  2. Arias C. R., Verdonck L., Swings J., Garay E., Aznar R. 1997; Intraspecific differentiation of Vibrio vulnificus biotypes by amplified fragment length polymorphism and ribotyping. Appl Environ Microbiol 63:2600–2606
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1991 Current Protocols in Molecular Biology New York: Greene Publishing Associates-Wiley Interscience;
    [Google Scholar]
  4. Blears M. J., De Grandis S. A., Lee H., Trevors J. T. 1998; Amplified Fragment Length Polymorphism (AFLP): a review of the procedure and its application. J Ind Microbiol Biotechnol 21:99–114 [CrossRef]
    [Google Scholar]
  5. Buddenhagen I., Sequeira L., Kelman A. 1962; Designation of races in Pseudomonas solanacearum. Phytopathology 52:726
    [Google Scholar]
  6. Clerc A., Manceau C., Nesme X. 1998; Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within Genospecies III of Pseudomonas syringae. Appl Environ Microbiol 64:1180–1187
    [Google Scholar]
  7. Cook D., Sequeira L. 1994; Strain differentiation of Pseudomonas solanacearum by molecular genetics methods. In Bacterial Wilt: the Disease and its Causative Agent, Pseudomonas solanacearum pp. 77–93Edited by Hayward A. C., Hartman G. L. Wallingford: CAB International;
    [Google Scholar]
  8. Cook D., Barlow E., Sequeira L. 1989; Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. Mol Plant–Microbe Interact 2:113–121 [CrossRef]
    [Google Scholar]
  9. Cook D., Barlow E., Sequeira L. 1991; DNA probes as tools for the study of host–pathogen evolution: the example of Pseudomonas solanacearum. In Advances in Molecular Genetics of Plant–Microbe Interactions pp. 103–108Edited by Henneke H., Verma D. P. S. Dordrecht: Kluwer;
    [Google Scholar]
  10. Eden-Green S. J. 1994; Diversity of Pseudomonas solanacearum and related bacteria in South East Asia: new direction for moko disease. In Bacterial Wilt: the Disease and its Causative Agent, Pseudomonas solanacearum pp. 25–34Edited by Hayward A. C., Hartman G. L. Wallingford: CAB International;
    [Google Scholar]
  11. Eden-Green S. J., Sastraatmadja H. 1990; Blood disease present in Java. FAO Plant Protein Bull 38:49–50
    [Google Scholar]
  12. Fegan M., Taghavi M., Sly L. I., Hayward A. C. 1998; Phylogeny, diversity and molecular diagnostics of Ralstonia solanacearum. In Bacterial Wilt Disease: Molecular and Ecological Aspects pp. 19–33Edited by Prior P., Allen C., Elphinstone J. . Paris: INRA Editions;
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 1995 phylip (phylogeny inference package), version 3.55 Seattle: Department of Genetics, University of Washington;
    [Google Scholar]
  15. Folkertsma R. T., Rouppe Van der Voort J. N. A. M., de Groot K. E., Van Zandvoort P. M., Schots A., Gommers F. J., Helder J., Bakker J. 1996; Gene pool similarities of potato cyst nematode populations assessed by AFLP analysis. Mol Plant–Microbe Interact 9:47–54 [CrossRef]
    [Google Scholar]
  16. Genetics Computer Group 1999 Wisconsin package, version 10.0 Madison, WI: Genetics Computer Group;
    [Google Scholar]
  17. Genin S., Gough C. L., Zischek C., Boucher C. A. 1992; Evidence that the hrpB encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum. Mol Microbiol 6:3065–3076 [CrossRef]
    [Google Scholar]
  18. Gillings M. R., Fahy P. 1994; Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex. In Bacterial Wilt: the Disease and its Causative Agent, Pseudomonas solanacearum pp. 95–112Edited by Hayward A. C., Hartman G. L. Wallingford: CAB International;
    [Google Scholar]
  19. Hayward A. C. 1964; Characteristics of Pseudomonas solanacearum. J Appl Bacteriol 27:265–277 [CrossRef]
    [Google Scholar]
  20. Hayward A. C. 1991; Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87 [CrossRef]
    [Google Scholar]
  21. Hayward A. C., El-Nashaar H. M., Nydegger U., De Lindo L. 1990; Variation in nitrate metabolism in biovars of Pseudomonas solanacearum. J Appl Bacteriol 69:269–280 [CrossRef]
    [Google Scholar]
  22. He L. Y., Sequeira L., Kelman A. 1983; Characteristics of strains of Pseudomonas solanacearum. Plant Dis 67:1357–1361 [CrossRef]
    [Google Scholar]
  23. Hermans P. W. M., Sluijter M., Hoogenboezem T., Heersma H., Vanbelkum A., De Groot R. 1995; Comparative study of five different DNA fingerprint techniques for molecular typing of Streptococcus pneumoniae strains. J Clin Microbiol 33:1606–1612
    [Google Scholar]
  24. Janssen P., Coopman R., Huys G., Swings J., Bleeker M., Vos P., Zabeau M., Kersters K. 1996; Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142:1881–1893 [CrossRef]
    [Google Scholar]
  25. Janssen P., Maquelin K., Coopman R., Tjernberg I., Bouvet P., Kersters K., Dijkshoorn L. 1997; Discrimination of Acinetobacter genomic species by AFLP fingerprinting. Int J Syst Bacteriol 47:1179–1187 [CrossRef]
    [Google Scholar]
  26. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  27. Keim P., Kalif A., Schupp J.7 other authors 1997; Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179:818–824
    [Google Scholar]
  28. Li X., Dorsch M., Del Dot T., Sly L. I., Stackebrandt E., Hayward A. C. 1993; Phylogenetic studies of the rRNA group II pseudomonads based on 16S rRNA gene sequences. J Appl Bacteriol 74:324–329 [CrossRef]
    [Google Scholar]
  29. Li X., Hayward A. C. 1994; Bacterial whole cell protein profiles of the rRNA group II pseudomonads. J Appl Bacteriol 77:308–318 [CrossRef]
    [Google Scholar]
  30. Lin J.-J., Kuo J., Ma J. 1996; A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria. Nucleic Acids Res 24:3649–3650 [CrossRef]
    [Google Scholar]
  31. Nei M. 1973; Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323 [CrossRef]
    [Google Scholar]
  32. Palleroni N. J., Doudoroff M. 1971; Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. J Bacteriol 107:690–696
    [Google Scholar]
  33. Pegg K., Moffett M. 1971; Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust J Exp Agric Anim Husb 11:696–698 [CrossRef]
    [Google Scholar]
  34. Poussier S., Vandewalle P., Luisetti J. 1999; Genetic diversity of African and worldwide strains of Ralstonia solanacearum as determined by PCR-Restriction Fragment Length Polymorphism analysis of the hrp gene region. Appl Environ Microbiol 65:2184–2194
    [Google Scholar]
  35. Restrepo S., Duque M., Tohme J., Verdier V. 1999; AFLP fingerprinting: an efficient technique for detecting genetic variation of Xanthomonas axonopodis pv. manihotis. Microbiology 145:107–114 [CrossRef]
    [Google Scholar]
  36. Roberts S. J., Eden-Green S. J., Jones P., Ambler D. J. 1990; Pseudomonas syzygii sp. nov., the cause of Sumatra disease of cloves. Syst Appl Microbiol 13:34–43 [CrossRef]
    [Google Scholar]
  37. Seal S. E., Jackson L. A., Daniels M. J. 1992; Use of tRNA consensus primers to indicate subgroups of Pseudomonas solanacearum by polymerase chain reaction amplification. Appl Environ Microbiol 58:3759–3761
    [Google Scholar]
  38. Seal S. E., Jackson L. A., Young J. P. W., Daniels M. J. 1993; Differentiation of Pseudomonas solanacearum, Pseudomonas syzygii, Pseudomonas pickettii and the Blood Disease Bacterium by partial 16S rRNA sequencing: construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. J Gen Microbiol 139:1587–1594 [CrossRef]
    [Google Scholar]
  39. Smith J. J., Offord L. C., Holderness M., Saddler G. S. 1995; Genetic diversity of Burkholderia solanacearum (synonym Pseudomonas solanacearum) race 3 in Kenya. Appl Environ Microbiol 61:4263–4268
    [Google Scholar]
  40. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy: the Principles and Practice of Numerical Classification San Francisco: W. H. Freeman;
    [Google Scholar]
  41. Taghavi M., Hayward C., Sly L. I., Fegan M. 1996; Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the Blood Disease Bacterium of banana based on 16S rRNA gene sequences. Int J Syst Bacteriol 46:10–15 [CrossRef]
    [Google Scholar]
  42. Tsuchiya K., Horita M. 1998; Genetic diversity of Ralstonia solanacearum in Japan. In Bacterial Wilt Disease: Molecular and Ecological Aspects pp. 61–73Edited by Prior P., Allen C., Elphinstone J. Paris: INRA Editions;
    [Google Scholar]
  43. Van der Wolf J. M., Bonants P. J. M., Smith J. J., Hagenaar M., Nijhuis E., Van Beckhoven J. R. C. M., Saddler G. S., Trigalet A., Feuillade R. 1998; Genetic diversity of Ralstonia solanacearum race 3 in Western Europe determined by AFLP, RC-PFGE and Rep-PCR. In Bacterial Wilt Disease: Molecular and Ecological Aspects pp. 44–49Edited by Prior P., Allen C., Elphinstone J. Paris: INRA Editions;
    [Google Scholar]
  44. Vos P., Hogers R., Bleeker M.8 other authors 1995; AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414 [CrossRef]
    [Google Scholar]
  45. Ward J. H. 1963; Hierarchical grouping to optimize an objective function. Am Stat Assoc J 58:236–244 [CrossRef]
    [Google Scholar]
  46. Woese C. R., Gutell R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47:621–669
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1679
Loading
/content/journal/micro/10.1099/00221287-146-7-1679
Loading

Data & Media loading...

Most cited Most Cited RSS feed