1887

Abstract

The interaction between serotypes and macrophages is potentially instrumental in determining the outcome of infection. The nature of this interaction was characterized with respect to virulence and serotype-host specificity using pigs as the infection model. Experimental infection with , or resulted in enteric, systemic or asymptomatic infection, respectively, which correlates well with the association of with systemic disease in pigs in epidemiological studies. Persistence within porcine alveolar macrophages did not directly correlate with virulence since persisted in the highest numbers, and in the lowest. Comparison to other studies revealed that the relatively high persistence of in macrophages correlates with its virulence in a broad range of animals: this could be a virulence mechanism for broad-host-range serotypes. There were little or no significant differences in the induction of pro-inflammatory cytokines by macrophages infected with the three serotypes. and , but not , damaged porcine macrophages, and the mechanism of damage did not resemble apoptosis. In conclusion, the virulence of serotypes in pigs did not directly correlate with their interaction with porcine macrophages . The interaction of and macrophages may not accurately model their interaction , and this will form the basis of further study.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1639
2000-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461639a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1639&mimeType=html&fmt=ahah

References

  1. Allen R. T., Hunter W. J. III, Agrawal D. K. 1997; Morphological and biochemical characterization and analysis of apoptosis. J Pharmacol Toxicol Methods 37:215–228 [CrossRef]
    [Google Scholar]
  2. Alpuche-Aranda C. M., Berthiaume E. P., Mock B., Swanson J. A., Miller S. I. 1995; Spacious phagosome formation within mouse macrophages correlates with Salmonella serotype pathogenicity and host susceptibility. Infect Immun 63:4456–4462
    [Google Scholar]
  3. Anonymous 1978 1998; Annual reports on Salmonella in livestock production. Veterinary Laboratories Agency, Ministry of Agriculture, Fisheries and Food; UK:
    [Google Scholar]
  4. Baird G. D., Manning E. J., Jones P. W. 1985; Evidence for related virulence sequences in plasmids of Salmonella dublin and Salmonella typhimurium. J Gen Microbiol 131:1815–1823
    [Google Scholar]
  5. Barrow P. A., Huggins M. B., Lovell M. A. 1994; Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun 62:4602–4610
    [Google Scholar]
  6. Baskerville A., Dow C., Curran W. L., Hanna J. 1972; Ultrastructure of phagocytosis of Salmonella cholerae-suis by pulmonary macrophages in vivo. Br J Exp Pathol 53:641–647
    [Google Scholar]
  7. Berends B. R., van Knapen F., Snijers J. M., Mossel D. A. 1997; Identification and quantification of risk factors regarding Salmonella spp. on pork carcasses. Int J Food Microbiol 36:199–206 [CrossRef]
    [Google Scholar]
  8. Bolton A. J., Osborne M. P., Wallis T. S., Stephen J. 1999; Interaction of Salmonella choleraesuis, Salmonella dublin and Salmonella typhimurium with porcine and bovine terminal ileum in vivo. Microbiology 145:2431–2441
    [Google Scholar]
  9. Buchmeier N. A., Heffron F. 1989; Intracellular survival of wild-type Salmonella typhimurium and macrophage-sensitive mutants in diverse populations of macrophages. Infect Immun 57:1–7
    [Google Scholar]
  10. Cendan J. C., Moldawer L. L., Souba W. W., Copeland E. M., Lind D. S. 1994; Endotoxin-induced nitric oxide production in pulmonary artery endothelial cells is regulated by cytokines. Arch Surg 129:1296–1300 [CrossRef]
    [Google Scholar]
  11. Chen L. M., Kaniga K., Galán J. E. 1996; Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol 21:1101–1115 [CrossRef]
    [Google Scholar]
  12. Chong C., Bost K. L., Clements J. D. 1996; Differential production of interleukin-12 mRNA by murine macrophages in response to viable or killed Salmonella spp. Infect Immun 64:1154–1160
    [Google Scholar]
  13. Dunlap N. E., Benjamin W. H. Jr, Briles D. E. 1994; The intracellular nature of Salmonella infection during the early stages of mouse typhoid. Immunol Ser 60:303–312
    [Google Scholar]
  14. Espevik T., Nissen-Meyer J. 1986; A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumour necrosis factor from human monocytes. J Immunol Methods 95:99–105 [CrossRef]
    [Google Scholar]
  15. Fedorka-Cray P. J., Kelley L. C., Stabel T. J., Cray J. T., Laufer J. A. 1995; Alternate routes of invasion may affect pathogenesis of Salmonella typhimurium in swine. Infect Immun 63:2658–2664
    [Google Scholar]
  16. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F. 1986; Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 83:5189–5193 [CrossRef]
    [Google Scholar]
  17. Frank D. E., Ahrens F. A., Kramer T. T. 1996; Cytokine release by porcine livers perfused with lipopolysaccharide or live Salmonella choleraesuis. Am J Vet Res 57:472–476
    [Google Scholar]
  18. Ganter M., Hensel A. 1997; Cellular variables in bronchoalveolar lavage fluids (BALF) in selected healthy pigs. Res Vet Sci 63:215–217 [CrossRef]
    [Google Scholar]
  19. Gray J. T., Fedorka-Cray P. J., Stabel T. J., Ackermann M. R. 1995; Influence of inoculation route on the carrier state of Salmonella choleraesuis in swine. Vet Microbiol 47:43–59 [CrossRef]
    [Google Scholar]
  20. Guilloteau L. A., Wallis T. S., Gautier A. V., MacIntyre S., Platt D. J., Lax A. J. 1996; The Salmonella virulence plasmid enhances Salmonella-induced lysis of macrophages and influences inflammatory responses. Infect Immun 64:3385–3393
    [Google Scholar]
  21. Hensel M., Shea J. E., Waterman S. R.7 other authors 1998; Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30:163–174 [CrossRef]
    [Google Scholar]
  22. Hersh D., Monack D. M., Smith M. R., Ghori N., Falkow S., Zychlincky A. 1999; The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96:2396–2401 [CrossRef]
    [Google Scholar]
  23. Hirose K., Ezaki T., Miyake M., Li T., Khan A. Q., Kawamura Y., Yokoyama H., Takami T. 1997; Survival of Vi-capsulated and Vi-deleted Salmonella typhi strains in cultured macrophages expressing different levels of CD14 antigen. FEMS Microbiol Lett 147:259–265 [CrossRef]
    [Google Scholar]
  24. Ishibashi Y., Arai T. 1996; A possible mechanism for host-specific pathogenesis of Salmonella serovars. Microb Pathog 21:435–446 [CrossRef]
    [Google Scholar]
  25. Jones P. W. 1975; The effect of storage in slurry on the virulence of Salmonella dublin. J Hyg 74:64–70
    [Google Scholar]
  26. Kim K. W., Wierda W. G., Kim Y. B. 1991; Immobilised IgG immune complex induces secretion of tumour necrosis factor-α by porcine alveolar macrophages. Am J Respir Cell Mol Biol 5:249–255 [CrossRef]
    [Google Scholar]
  27. Libby S. J., Goebel W., Ludwig A., Buchmeier N., Bowe F., Fang F. C., Guiney D. G., Songer J. G., Heffron F. 1994; A cytolysin encoded by Salmonella is required for survival within macrophages. Proc Natl Acad Sci USA 91:489–493 [CrossRef]
    [Google Scholar]
  28. Lindgren S. W., Stojiljkovic I., Heffron F. 1996; Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc Natl Acad Sci USA 93:4197–4201 [CrossRef]
    [Google Scholar]
  29. Lissner C. R., Weinstein D. L., O’Brien A. D. 1985; Mouse chromosome 1 Ity locus regulates microbicidal activity of isolated peritoneal macrophages against a diverse group of intracellular and extracellular bacteria. J Immunol 135:544–547
    [Google Scholar]
  30. McConkey D. J. 1998; Biochemical determinants of apoptosis and necrosis. Toxicol Lett 99:157–168 [CrossRef]
    [Google Scholar]
  31. Monack D. M., Raupach B., Hromockyj A. E., Falkow S. 1996; Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci USA 93:9833–9838 [CrossRef]
    [Google Scholar]
  32. Monack D. M., Mecsas J., Ghori N., Falkow S. 1997; Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc Natl Acad Sci USA 94:10385–10390 [CrossRef]
    [Google Scholar]
  33. Murtaugh M. P., Baarsch M. J., Zhou Y., Scamurra R. W., Lin G. 1996; Inflammatory cytokines in animal health and disease. Vet Immunol Immunopathol 54:45–55 [CrossRef]
    [Google Scholar]
  34. Nakai S., Mizuno K., Kaneta M., Hirai Y. 1988; A simple, sensitive bioassay for the detection of interleukin-1 using human melanoma A375 cell line. Biochem Biophys Res Commun 154:1189–1196 [CrossRef]
    [Google Scholar]
  35. Nnalue N. A. 1991; Relevance of inoculation route to virulence of three Salmonella spp. strains in mice. Microb Pathol 11:11–18 [CrossRef]
    [Google Scholar]
  36. Nnalue N. A., Shnyra A., Hultenby K., Lindberg A. A. 1992; Salmonella choleraesuis and Salmonella typhimurium associated with liver cells after intravenous inoculation of rats are localised in kupffer cells and multiply intracellularly. Infect Immun 60:2758–2768
    [Google Scholar]
  37. Pascopella L., Raupach B., Ghori N., Monack D., Falkow S., Small P. L. C. 1995; Host restriction phenotypes of Salmonella typhi and Salmonella gallinarum. Infect Immun 63:4329–4335
    [Google Scholar]
  38. Plested J. S. 1995; Identification of the antigens of salmonellas involved in the protective immune response. PhD thesis University of Reading; UK:
    [Google Scholar]
  39. Reed W. M., Olander H. J., Thacker H. L. 1986; Studies on the pathogenesis of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf infection in weanling pigs. Am J Vet Res 47:75–83
    [Google Scholar]
  40. Richter-Dahlfors A., Buchan M. J., Finlay B. B. 1997; Murine salmonellosis studies by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186:569–580 [CrossRef]
    [Google Scholar]
  41. Ruckdeschel K., Roggenkamp A., Lafont V., Mangeat P., Heesemann J., Rouot B. 1997; Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect Immun 65:4813–4821
    [Google Scholar]
  42. Savill J. 1997; Apoptosis in resolution of inflammation. J Leukoc Biol 61:375–380
    [Google Scholar]
  43. Schwan W. R., Kopecko D. J. 1997; Serovar specific differences in Salmonella survival within macrophage cells. Adv Exp Med Biol 412:277–278
    [Google Scholar]
  44. Sizemore D. R., Elinghorst E. A., Eck L. C., Branstrom A. A., Hoover D. L., Warren R. L., Rubin F. A. 1997; Interaction of Salmonella typhi strains with cultured human monocyte-derived macrophages. Infect Immun 65:309–312
    [Google Scholar]
  45. Sojka W. J., Field H. I. 1970; Salmonellosis in England and Wales, 1958–1967. Vet Bull 40:515–531
    [Google Scholar]
  46. Tschopp J., Thome M., Hofmann K., Meinl E. 1998; The fight of viruses against apoptosis. Curr Opin Genet Dev 8:82–87 [CrossRef]
    [Google Scholar]
  47. Van Reeth K., Adair B. 1997; Macrophages and respiratory viruses. Pathol Biol 45:184–192
    [Google Scholar]
  48. Van Snick J., Cayphas S., Vink A., Uyttenhove C., Coulie P. G., Rubira M. R., Simpson R. J. 1986; Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas. Proc Natl Acad Sci USA 83:9679–9683 [CrossRef]
    [Google Scholar]
  49. Vladoianu I.-R., Chang H. R., Pechère J.-C. 1990; Expression of host resistance to Salmonella typhi and Salmonella typhimurium: bacterial survival within macrophages of murine and human origin. Microb Pathog 8:83–90 [CrossRef]
    [Google Scholar]
  50. Wallis T. S., Paulin S. M., Plested J. S., Watson P. R., Jones P. W. 1995; The Salmonella dublin virulence plasmid mediates systemic but not enteric phases of salmonellosis in cattle. Infect Immun 63:2755–2761
    [Google Scholar]
  51. Watson P. R., Galyov E. E., Paulin S. M., Jones P. W., Wallis T. S. 1998; Mutation of invH, but not stn reduced Salmonella-induced enteritis in cattle. Infect Immun 66:1432–1438
    [Google Scholar]
  52. Watson P. R., Gautier A. V., Paulin S. M., Bland A. P., Jones P. W., Wallis T. S. 2000; Salmonella enterica serovar typhimurium and dublin can lyse macrophages by a mechanism distinct from apoptosis. Infect Immun 68:3744–3747 [CrossRef]
    [Google Scholar]
  53. Wilcock B. P., Schwartz K. J. 1992; Salmonellosis. In Diseases of Swine, 7th edn. pp. 570–583Edited by Leman A. D.others Ames, IA: Iowa State University Press;
    [Google Scholar]
  54. Williams Smith H., Halls S. 1966; The immunity produced by a rough S. dublin variant against Salmonella typhimurium and Salmonella choleraesuis infection in guinea-pigs. J Hyg 64:357–359 [CrossRef]
    [Google Scholar]
  55. Williams Smith H., Halls S. 1968; The simultaneous oral administration of Salmonella dublin, S. typhimurium and S. choleraesuis to calves and other animals. J Med Microbiol 1:203–209 [CrossRef]
    [Google Scholar]
  56. Winkler G. C. 1988; Pulmonary intravascular macrophages in domestic animal species: review of structural and functional properties. Am J Anat 181:217–234 [CrossRef]
    [Google Scholar]
  57. Zychlinsky A., Prevost M. C., Sansonetti P. J. 1992; Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–169 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1639
Loading
/content/journal/micro/10.1099/00221287-146-7-1639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error