1887

Abstract

The protein ClpA belongs to a diverse group of polypeptides named ClpATPases, which are highly conserved, and which include several molecular chaperones. In this study the gene encoding the 91 kDa protein b-ClpA of the facultative intracellular pathogen , which showed 70% identity to ClpA of , was identified and sequenced. Following heterologous expression in strains SG1126 (Δ) and SG1127 (Δ Δ), b-ClpA replaced the function of ClpA, participating in the degradation of abnormal proteins. A null mutant of was constructed, and growth experiments at 37 and 42 °C showed reduced growth rates for the null mutant, especially at the elevated temperature. The mutant complemented by and overexpressing the gene was even more impaired at 37 and 42 °C. In intracellular infection of human THP-1 or murine J774 macrophage-like cells, the null mutant and, to a lesser extent, the strain of overexpressing behaved similarly to the wild-type strain. In a murine model of infection, however, the absence of ClpA significantly increased persistence of . These results showed that in the highly conserved protein ClpA by itself was dispensable for intramacrophagic growth, but was involved in temperature-dependent growth regulation, and in bacterial clearance from infected BALB/c mice.

Keyword(s): Brucella , chaperone , ClpA and ClpATPase
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1605
2000-07-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461605a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1605&mimeType=html&fmt=ahah

References

  1. Allen C. A., Adams L. G., Ficht T. A. 1998; Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun 66:1008–1016
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seichman J. G., Smith J. A., Struhl K. 1989 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Bairoch A., Bucher P., Hofmann K. 1997; The PROSITE database, its status in 1997. Nucleic Acids Res 25:217–221 [CrossRef]
    [Google Scholar]
  5. Blum P., Ory J., Bauernfeind J., Krska J. 1992; Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J Bacteriol 174:7436–7444
    [Google Scholar]
  6. Bosseray N., Plommet M. 1976; Transformation normalisant la distribution du nombre de Brucella dans la rate de souris inoculées par voie intrapéritoneale. J Biol Stand 4:341–351 [CrossRef]
    [Google Scholar]
  7. Bosseray N., Plommet M. 1990; Brucella suis S2, Brucella melitensis Rev. 1 and Brucella abortus S19 living vaccines: residual virulence and immunity induced against three Brucella species challenge strains in mice. Vaccine 8:462–468 [CrossRef]
    [Google Scholar]
  8. Caron E., Liautard J. P., Köhler S. 1994; Differentiated U937 cells exhibit increased bactericidal activity upon LPS activation and discriminate between virulent and avirulent Listeria and Brucella species. J Leukoc Biol 56:174–181
    [Google Scholar]
  9. Corbel M. J. 1990; Brucella. In Principles of Bacteriology, Virology and Immunity pp. 339–353Edited by Parker M. T., Collier L. H. London: Edward Arnold;
    [Google Scholar]
  10. Donnenberg M. S., Kaper J. B. 1991; Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59:4310–4317
    [Google Scholar]
  11. Drazek E. S., Houng H.-S. H., Crawford R. M., Hadfield T. L., Hoover D. L., Warren R. L. 1995; Deletion of purE attenuates Brucella melitensis 16M for growth in human monocyte-derived macrophages. Infect Immun 63:3297–3301
    [Google Scholar]
  12. Elzer P. H., Phillips R. W., Kovach M. E., Peterson K. M., Roop R. M. II 1994; Characterization and genetic complementation of a Brucella abortus high-temperature requirement A (htrA) deletion mutant. Infect Immun 62:4135–4139
    [Google Scholar]
  13. Gay P., Le Coq D., Steinmetz M., Ferrari E., Hoch J. A. 1983; Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol 153:1424–1431
    [Google Scholar]
  14. Gay P., Le Coq D., Steinmetz M., Berkelman T., Kado C. I. 1985; Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164:918–921
    [Google Scholar]
  15. Godfroid F., Taminiau B., Danese I., Denoel P., Tibor A., Weynants V., Cloeckaert A., Godfroid J., Letesson J. J. 1998; Identification of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages. Infect Immun 66:5485–5493
    [Google Scholar]
  16. Gottesman S., Squires C., Pichersky E.11 other authors 1990a; Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc Natl Acad Sci USA 87:3513–3517 [CrossRef]
    [Google Scholar]
  17. Gottesman S., Clark W. P., Maurizi M. R. 1990b; The ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265:7886–7893
    [Google Scholar]
  18. Gottesman S., Clark W. P., de Crecy-Lagard V., Maurizi M. R. 1993; ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 268:22618–22626
    [Google Scholar]
  19. Harlow E., Lane D. 1988 Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Harmon B. G., Adams L. G., Frey M. 1988; Survival of rough and smooth strains of Brucella abortus in bovine mammary gland macrophages. Am J Vet Res 49:1092–1097
    [Google Scholar]
  21. Hendrick J. P., Hartl F. U. 1993; Molecular chaperone function of heat-shock proteins. Annu Rev Biochem 62:349–384 [CrossRef]
    [Google Scholar]
  22. Hoskins J. R., Pak M., Maurizi M. R., Wickner S. 1998; The role of the ClpA chaperone in proteolysis by ClpAP. Proc Natl Acad Sci USA 95:12135–12140 [CrossRef]
    [Google Scholar]
  23. Hwang B. J., Woo K. M., Goldberg A. L., Chung C. H. 1988; Protease Ti, a new ATP-dependent protease in Escherichia coli, contains protein-activated ATPase and proteolytic functions in distinct subunits. J Biol Chem 263:8727–8734
    [Google Scholar]
  24. Jenal U., Fuchs T. 1998; An essential protease involved in bacterial cell-cycle control. EMBO J 17:5658–5669 [CrossRef]
    [Google Scholar]
  25. Katayama Y., Gottesman S., Pumphrey J., Rudikoff S., Clark W. P., Maurizi M. R. 1988; The two-component, ATP-dependent Clp protease of Escherichia coli: purification, cloning, and mutational analysis of the ATP-binding component. J Biol Chem 263:15226–15236
    [Google Scholar]
  26. Köhler S., Teyssier J., Cloeckaert A., Rouot B., Liautard J. P. 1996; Participation of the molecular chaperone DnaK in intracellular growth of Brucella suis within U937-derived phagocytes. Mol Microbiol 20:701–712 [CrossRef]
    [Google Scholar]
  27. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802
    [Google Scholar]
  28. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  29. Liautard J. P., Gross A., Dornand J., Köhler S. 1996; Interactions between professional phagocytes and Brucella spp. Microbiologia 12:197–206
    [Google Scholar]
  30. Lin J., Ficht T. A. 1995; Protein synthesis in Brucella abortus induced during macrophage infection. Infect Immun 63:1409–1414
    [Google Scholar]
  31. Lin J., Adams L. G., Ficht T. A. 1992; Characterization of the heat shock response in Brucella abortus and isolation of the genes encoding the GroE heat shock proteins. Infect Immun 60:2425–2431
    [Google Scholar]
  32. Maurizi M. R., Clark W. P., Katayama Y., Rudikoff S., Pumphrey J., Bowers B., Gottesman S. 1990; Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265:12536–12545
    [Google Scholar]
  33. Nair S., Frehel C., Nguyen L., Escuyer V., Berche P. 1999; ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes. Mol Microbiol 31:185–196 [CrossRef]
    [Google Scholar]
  34. O’Callaghan D., Cazevieille C., Allardet-Servent A., Boschiroli M. L., Bourg G., Foulongne V., Frutos P., Kulakov Y., Ramuz M. 1999; A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33:1210–1220
    [Google Scholar]
  35. Pak M., Wickner S. 1997; Mechanism of protein remodeling by ClpA chaperone. Proc Natl Acad Sci USA 94:4901–4906 [CrossRef]
    [Google Scholar]
  36. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448 [CrossRef]
    [Google Scholar]
  37. Porte F., Liautard J. P., Köhler S. 1999; Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 67:4041–4047
    [Google Scholar]
  38. Price R. E., Templeton J. W., Smith R. III, Adams L. G. 1990; Ability of mononuclear phagocytes from cattle naturally resistant or susceptible to brucellosis to control in vitro intracellular survival of Brucella abortus. Infect Immun 58:879–886
    [Google Scholar]
  39. Rafie-Kolpin M., Essenberg R. C., Wyckoff J. H. III 1996; Identification and comparison of macrophage-induced proteins and proteins induced under various stress conditions in Brucella abortus. Infect Immun 64:5274–5283
    [Google Scholar]
  40. Rost B., Sander C., Schneider R. 1994; PHD – an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 10:53–60
    [Google Scholar]
  41. Rouquette C., Ripio M.-T., Pellegrini E., Bolla J.-M., Tascon R. I., Vazquez-Boland J.-A., Berche P. 1996; Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol Microbiol 21:977–987 [CrossRef]
    [Google Scholar]
  42. Rouquette C., de Chastellier C., Nair S., Berche P. 1998; The ClpATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol Microbiol 27:1235–1245 [CrossRef]
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  45. Schirmer E. C., Glover J. R., Singer M. A., Lindquist S. 1996; HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296 [CrossRef]
    [Google Scholar]
  46. Senior A. E. 1988; ATP synthesis by oxidative phosphorylation. Physiol Rev 68:177–231
    [Google Scholar]
  47. Smith R. III 1990; T lymphocyte-mediated mechanisms of acquired protective immunity against brucellosis in cattle. In Advances in Brucellosis Research pp. 164–190Edited by Adams L. G. College Station, TX: Texas A&M University Press;
    [Google Scholar]
  48. Smith C. K., Baker T. A., Sauer R. T. 1999; Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci USA 96:6678–6682 [CrossRef]
    [Google Scholar]
  49. Sola-Landa A., Pizarro-Cerda J., Grillo M.-J., Moreno E., Moriyon I., Blasco J.-M., Gorvel J. P., Lopez-Goni I. 1998; A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol Microbiol 29:125–138 [CrossRef]
    [Google Scholar]
  50. Squires C., Squires C. L. 1992; The Clp proteins: proteolysis regulators or molecular chaperones?. J Bacteriol 174:1081–1085
    [Google Scholar]
  51. Suzuki C. K., Rep M., van Dijl J. M., Suda K., Grivell L. A., Schatz G. 1997; ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem Sci 22:118–123 [CrossRef]
    [Google Scholar]
  52. Thomas J. G., Baneyx F. 1998; Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo. J Bacteriol 180:5165–5172
    [Google Scholar]
  53. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  54. Tybulewicz V. L., Falk G., Walker J. E. 1984; Rhodopseudomonas blastica atp operon: nucleotide sequence and transcription. J Mol Biol 179:185–214 [CrossRef]
    [Google Scholar]
  55. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  56. Wawrzynow A., Banecki B., Zylicz M. 1996; The Clp ATPases define a novel class of molecular chaperones. Mol Microbiol 21:895–899 [CrossRef]
    [Google Scholar]
  57. Wickner S., Gottesman S., Skowyra D., Hoskins J., McKenney K., Maurizi M. R. 1994; A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci USA 91:12218–12222 [CrossRef]
    [Google Scholar]
  58. Woo K. M., Chung W. J., Ha D. B., Goldberg A. L., Chung C. H. 1989; Protease Ti from Escherichia coli requires ATP hydrolysis for protein breakdown but not for hydrolysis of small peptides. J Biol Chem 264:2088–2091
    [Google Scholar]
  59. Young E. 1983; Human brucellosis. Rev Infect Dis 5:821–842 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1605
Loading
/content/journal/micro/10.1099/00221287-146-7-1605
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error