1887

Abstract

Conservation of the sporulation processes between spp. and spp. was investigated through evolutionary and complementation analyses of σ. Alignment of partial predicted σ amino acid sequences from three spp, and five spp. revealed that amino acid residues previously reported to be involved in promoter utilization (M124, E119 and N120) and strand opening (C117) are conserved among all these species. Phylogenetic analyses of various sigma factor sequences from endospore-forming bacteria revealed that homologues of σ, σ and σ clustered together regardless of genus, suggesting a common origin of sporulation sigma factors. The functional equivalence between σ and σ was investigated by complementing a non-polar σ null mutant with the operon from either ( ) or ( ). Single-copy integration of into the locus of the σ null mutant completely restored the wild-type sporulation phenotype, while only partially restored sporulation. Maximal expression of occurred approximately 12 h later than maximal expression of . Differences in temporal expression patterns for and in the background may at least partially explain the observed sporulation complementation phenotypes. This study suggests a common phylogenetic ancestor for σ in spp. and spp., although regulation of σ expression may differ in these two genera.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1593
2000-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461593a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1593&mimeType=html&fmt=ahah

References

  1. Adams L. F., Brown K. L., Whiteley H. R. 1991; Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J Bacteriol 173:3846–3854
    [Google Scholar]
  2. Aiyar S. E., Juang Y. L., Helmann J. D., Dehaseth P. L. 1994; Mutations in sigma factor that affect the temperature dependence of transcription from a promoter, but not from a mismatch bubble in double-stranded DNA. Biochemistry 33:11501–11506 [CrossRef]
    [Google Scholar]
  3. Baldus J. M., Green B. D., Youngman P., Moran C. P. 1994; Phosphorylation of Bacillus subtilis transcription factor SpoOA stimulates transcription from the spoIIG promoter by enhancing binding to weak OA boxes. J Bacteriol 176:296–306
    [Google Scholar]
  4. Boor K. J. 1994 Genetic analysis of the Bacillus subtilis rpoB region Dissertation thesis University of California; Davis:
    [Google Scholar]
  5. Brown D. P., Ganova-Raeva L., Green B. D., Wilkinson S. R., Young M., Youngman P. 1994; Characterization of spoOA homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain. Mol Microbiol 14:411–426 [CrossRef]
    [Google Scholar]
  6. Buckner C. M., Schyns G., Moran C. P. Jr 1998; A region in the Bacillus subtilis transcription factor SpoOA that is important for spoIIG promoter activation. J Bacteriol 180:3578–3583
    [Google Scholar]
  7. Carlson H. C., Lu S., Koos L., Haldenwang W. G. 1996; Exchange of precursor-specific elements between pro-sigma-E and pro-sigma-K of Bacillus subtilis. J Bacteriol 178:546–549
    [Google Scholar]
  8. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  9. Cutting S. M., Horn P. B. V. 1990; Genetic analysis. In Molecular Biological Methods for Bacillus pp. 25–74Edited by Harwood C. R., Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  10. Diederich B., Tatti K. M., Jones C. H., Beall B., Moran C. P. Jr 1992; Genetic suppression analysis of σE interaction with three promoters in sporulating Bacillus subtilis. Gene 121:63–69 [CrossRef]
    [Google Scholar]
  11. Duvall E. J., Williams D. M., Lovett P. S., Rudolph C., Vasantha N., Guyer M. 1983; Chloramphenicol-inducible gene expression in Bacillus subtilis. Gene 24:171–178 [CrossRef]
    [Google Scholar]
  12. Errington J. 1993; Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57:1–33
    [Google Scholar]
  13. Felsenstein J. 1989; phylip – phylogeny inference package (Version 3.2). Cladistics 5:164–166
    [Google Scholar]
  14. Furrer B., Candrian U., Hoefelein C., Luethy J. 1991; Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol 70:372–379 [CrossRef]
    [Google Scholar]
  15. Halberg R., Kroos L. 1994; Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J Mol Biol 243:425–436 [CrossRef]
    [Google Scholar]
  16. Halberg R., Oke V., Kroos L. 1995; Effects of Bacillus subtilis sporulation regulatory protein SpoIIID on transcription by σK RNA polymerase in vivo and in vitro. J Bacteriol 177:1888–1891
    [Google Scholar]
  17. Haldenwang W. G. 1995; The sigma factors of Bacillus subtilis. Microbiol Rev 59:1–30
    [Google Scholar]
  18. Hanahan D. 1985; Techniques for transformation of Escherichia coli. In DNA Cloning: a Practical Approach pp. 109–136Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  19. Helmann J. D., Chamberlin M. J. 1988; Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872 [CrossRef]
    [Google Scholar]
  20. Henner D. J. 1990; Inducible expression of regulatory genes in Bacillus subtilis. Methods Enzymol 185:223–228
    [Google Scholar]
  21. Hofmeister A. E. M., Londono-Vallejo A. J., Harry E., Stragier P., Losick R. 1995; Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83:219–226 [CrossRef]
    [Google Scholar]
  22. Horton R. M., Cai Z., Ho S. N., Pease L. R. 1990; Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. BioTechniques 8:528–535
    [Google Scholar]
  23. Jones C. H., Moran C. P. Jr 1992; Mutant σ factor blocks transition between promoter binding and initiation of transcription. Proc Natl Acad Sci USA 89:1958–1962 [CrossRef]
    [Google Scholar]
  24. Karow L. M., Glaser P., Piggot P. J. 1995; Identification of a gene, spoIIIR, that links the activation of σE to the transcriptional activity of σF during sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 92:2012–2016 [CrossRef]
    [Google Scholar]
  25. Keis S., Bennett C. F., Ward V. K., Jones D. T. 1995; Taxonomy and phylogeny of industrial solvent-producing clostridia. Int J Syst Bacteriol 45:693–705 [CrossRef]
    [Google Scholar]
  26. Kenney T. J., Kirchman P. A., Moran C. P. Jr 1988; Gene encoding σE is transcribed from a σA-like promoter in Bacillus subtilis. J Bacteriol 170:3058–3064
    [Google Scholar]
  27. Leighton T. J., Doi R. H. 1971; The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. J Biol Chem 246:3189–3195
    [Google Scholar]
  28. Londono-Vallejo J. A., Stragier P. 1995; Cell–cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev 9:503–508 [CrossRef]
    [Google Scholar]
  29. Lonetto M., Gribskov M., Gross C. A. 1992; The σ70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849
    [Google Scholar]
  30. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Peters H. K. III, Carlson H. C., Haldenwang W. G. 1992; Mutational analysis of the precursor-specific region of Bacillus subtilis σE. J Bacteriol 174:4629–4637
    [Google Scholar]
  32. Piggot P. J. 1973; Mapping of asporogenous mutations of Bacillus subtilis: a minimum estimate of the number of sporulation operons. J Bacteriol 114:1241–1253
    [Google Scholar]
  33. Roux K. H. 1995; Optimization and troubleshooting in PCR. In PCR Primer: a Laboratory Manual pp. 53–62Edited by Dieffenbach C. W., Dveksler G. S. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Santangelo J. D., Kuhn A., Treuner-Lange A., Durre P. 1998; Sporulation and time course expression of sigma-factor homologous genes in Clostridium acetobutylicum. FEMS Microbiol Lett 161:157–164 [CrossRef]
    [Google Scholar]
  35. Satola S., Kirchman P. A., Moran C. P. Jr 1991; SpoOA binds to a promoter used by σA RNA polymerase during sporulation in Bacillus subtilis. Proc Natl Sci USA 88:4533–4537 [CrossRef]
    [Google Scholar]
  36. Satola S. W., Baldus J. M., Moran C. P. Jr 1992; Binding of SpoOA stimulates spoIIG promoter activity in Bacillus subtilis. J Bacteriol 174:1448–1453
    [Google Scholar]
  37. Sauer U., Treuner A., Buchholz M., Santangelo J. D., Durre P. 1994; Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J Bacteriol 176:6572–6582
    [Google Scholar]
  38. Schyns G., Buckner C. M., Moran C. P. Jr 1997; Activation of the Bacillus subtilis spoIIG promoter requires interaction of SpoOA and the sigma subunit of RNA polymerase. J Bacteriol 179:5605–5608
    [Google Scholar]
  39. Smith K., Youngman P. 1992; Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74:705–711 [CrossRef]
    [Google Scholar]
  40. Stragier P., Losick R. 1996; Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30:297–341 [CrossRef]
    [Google Scholar]
  41. Stragier P., Bouvier J., Bonamy C., Szulmajster J. 1984; A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli. Nature 312:376–378 [CrossRef]
    [Google Scholar]
  42. Tatti K. M., Moran C. P. Jr 1995; σE changed to σB specificity by amino acid substitutions in its −10 binding region. J Bacteriol 177:6506–6509
    [Google Scholar]
  43. Tatti K. M., Jones C. H., Moran C. P. Jr 1991; Genetic evidence for interaction of σE with the spoIIID promoter in Bacillus subtilis. J Bacteriol 173:7828–7833
    [Google Scholar]
  44. Wilkinson S. R., Young M., Goodacre R., Morris J. G., Farrow J. A. E., Collins M. D. 1995; Phenotypic and genotypic differences between certain strains of Clostridium acetobutylicum. FEMS Microbiol Lett 125:199–204 [CrossRef]
    [Google Scholar]
  45. Wong J., Sass C., Bennett G. N. 1995; Sequence and arrangement of genes encoding sigma factors in Clostridium acetobutylicum ATCC 824. Gene 153:89–92 [CrossRef]
    [Google Scholar]
  46. Young M., Cole S. T. 1993; Clostridium. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp. 35–52Edited by Sonenshein A., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Zhang B., Daniel R. A., Errington J., Kroos L. 1997; Bacillus subtilis SpoIIID protein binds to two sites in the spoVD promoter and represses transcription by σE RNA polymerase. J Bacteriol 179:972–975
    [Google Scholar]
  48. Zhao Y., Melville S. B. 1998; Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens. J Bacteriol 180:136–142
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1593
Loading
/content/journal/micro/10.1099/00221287-146-7-1593
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error