1887

Abstract

A regulon from that plays a role in the utilization of β-glucosides has been isolated, sequenced and subjected to sequence analysis. This regulon encodes a β-glucoside-specific Enzyme II (EII) component () of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and a phospho-β-glucosidase () which is responsible for the breakdown of the phospho-β-glucosides within the cell. Both the and gene products have significant similarity with proteins that have similar functions from , , , , and . The potential functions of the BglP and BglA proteins are supported by phenotypic data from both and . A chromosomal deletion in spanning the and genes resulted in a strain that was unable to hydrolyse the β-glucoside aesculin in the presence of glucose. When glucose was removed from the medium, the deletion strain regained the ability to break down aesculin. These data suggest that possesses an alternative mechanism from the one described in this report for breaking down β-glucosides. This second mechanism was repressed by glucose while the regulon described here was not. Complementation studies in CC118 also suggest a potential role for this regulon in the utilization of other β-glucosides. When a plasmid containing the 8 kb β-glucoside-specific regulon was transformed into CC118, the transformed strain was able to break down the β-glucoside arbutin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1555
2000-07-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461555a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1555&mimeType=html&fmt=ahah

References

  1. Amster-Choder O., Houman F., Wright A.. 1989; Protein phosphorylation regulates transcription of the beta-glucoside utilization operon in E. coli. Cell58:847–855[CrossRef]
    [Google Scholar]
  2. Anonymous 1984; E. coli TB1 – host for pUC plasmids. Focus6:7
    [Google Scholar]
  3. Bardowski J., Ehrlich S. D., Chopin A.. 1994; BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in beta-glucoside utilization in Lactococcus lactis. J Bacteriol176:5681–5685
    [Google Scholar]
  4. Beloin C., Hirschbein L., Le Hegarat F.. 1996; Suppression of the Bgl+ phenotype of a delta hns strain of Escherichia coli by a Bacillus subtilis antiterminator binding site. Mol Gen Genet250:761–766
    [Google Scholar]
  5. Bramley H. F., Kornberg H. L.. 1987; Nucleotide sequence of bglC, the gene specifying EnzymeIIbgl of the PEP:sugar phosphotransferase system in Escherichia coli K12, and overexpression of the gene product. J Gen Microbiol133:563–573
    [Google Scholar]
  6. Brehm K., Ripio M. T., Kreft J., Vasquez-Boland J. A.. 1999; The bvr locus of Listeria monocytogenes mediates virulence gene repression by β-glucosides. J Bacteriol181:5024–5032
    [Google Scholar]
  7. Brown G. D., Thomson J. A.. 1998; Isolation and characterisation of an aryl-beta-d-glucoside uptake and utilisation system (abg) from the gram-positive ruminal Clostridium species C. longisporum. Mol Gen Genet257:213–218[CrossRef]
    [Google Scholar]
  8. Brunker P., Hils M., Altenbuchner J., Mattes R.. 1998; The mannitol utilization genes of Pseudomonas fluorescens are regulated by an activator: cloning, nucleotide sequence and expression of the mtlR gene. Gene215:19–27[CrossRef]
    [Google Scholar]
  9. Chen Q., Amster-Choder O.. 1998; BglF, the sensor of the bgl system and the beta-glucosides permease of Escherichia coli: evidence for dimerization and intersubunit phosphotransfer. Biochemistry37:8714–8723[CrossRef]
    [Google Scholar]
  10. Chen Q., Arents J. C., Bader R., Postma P. W., Amster-Choder O.. 1997; BglF, the sensor of the E. coli bgl system, uses the same site to phosphorylate both a sugar and a regulatory protein. EMBO J16:4617–4627[CrossRef]
    [Google Scholar]
  11. Curtiss R. III. 1965; Chromosomal aberrations associated with mutations to bacteriophage resistance in Escherichia coli. J Bacteriol89:28–40
    [Google Scholar]
  12. De Vos W. M.. 1987; Gene cloning and expression in lactic streptococci. FEMS Microbiol Rev46:281–295[CrossRef]
    [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O.. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395[CrossRef]
    [Google Scholar]
  14. Dower W. J.. 1990; Electroporation of bacteria: a general approach to genetic transformation. Genetic Engineering – Principles and Methods275–296 New York: Plenum;
    [Google Scholar]
  15. Ferretti J. J., Russell R. R., Dao M. L.. 1989; Sequence analysis of the wall-associated protein precursor of Streptococcus mutans antigen A. Mol Microbiol3:469–478[CrossRef]
    [Google Scholar]
  16. Fox C. F., Wilson G.. 1968; The role of a phosphoenolpyruvate-dependent kinase system in beta-glucoside catabolism in Escherichia coli. Proc Natl Acad Sci U S A59:988–995[CrossRef]
    [Google Scholar]
  17. Hamada S., Slade H. D.. 1980; Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev44:331–384
    [Google Scholar]
  18. el Hassouni M., Chippaux M., Barras F.. 1990; Analysis of the Erwinia chrysanthemi arb genes, which mediate metabolism of aromatic beta-glucosides. J Bacteriol172:6261–6267
    [Google Scholar]
  19. el Hassouni M., Henrissat B., Chippaux M., Barras F.. 1992; Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans. J Bacteriol174:765–777
    [Google Scholar]
  20. Kruger S., Hecker M.. 1995; Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. J Bacteriol177:5590–5597
    [Google Scholar]
  21. Kruger S., Gertz S., Hecker M.. 1996; Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J Bacteriol178:2637–2644
    [Google Scholar]
  22. Lai X., Davis F. C., Hespell R. B., Ingram L. O.. 1997; Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides. Appl Environ Microbiol63:355–363
    [Google Scholar]
  23. Le Coq D., Lindner C., Kruger S., Steinmetz M., Stulke J.. 1995; New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol177:1527–1535
    [Google Scholar]
  24. Macrina F. L., Evans R. P., Tobian J. A., Hartley D. L., Clewell D. B., Jones K. R.. 1983; Novel shuttle plasmid vehicles for Escherichia–Streptococcus transgeneric cloning. Gene25:145–150[CrossRef]
    [Google Scholar]
  25. Manoil C., Beckwith J.. 1985; TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci USA82:8129–8133[CrossRef]
    [Google Scholar]
  26. Marasco R., Muscariello L., Varcamonti M., De Felice M., Sacco M.. 1998; Expression of the bglH gene of Lactobacillus plantarum is controlled by carbon catabolite repression. J Bacteriol180:3400–3404
    [Google Scholar]
  27. Marck C.. 1988; ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res16:1829–1836[CrossRef]
    [Google Scholar]
  28. Moran C. P. Jr, Lang N., LeGrice S. F., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R.. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet186:339–346[CrossRef]
    [Google Scholar]
  29. Murchison H. H., Barrett J. F., Cardineau G. A., Curtiss R. III. 1986; Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect Immun54:273–282
    [Google Scholar]
  30. Perez-Casal J., Caparon M. G., Scott J. R.. 1991; Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol173:2617–2624
    [Google Scholar]
  31. Postma P. W., Lengeler J. W., Jacobson G. R.. 1993; Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev57:543–594
    [Google Scholar]
  32. Princiotta M. F., Lenz L. L., Bevan M. J., Staerz U. D.. 1998; H2-M3 restricted presentation of a Listeria-derived leader peptide. J Exp Med187:1711–1719[CrossRef]
    [Google Scholar]
  33. Rutberg B.. 1997; Antitermination of transcription of catabolic operons. Mol Microbiol23:413–421[CrossRef]
    [Google Scholar]
  34. Saier M. H. Jr, Yamada M., Erni B..7 other authors 1988; Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons. FASEB J2:199–208
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Schaefler S.. 1967; Inducible system for the utilization of beta-glucosides in Escherichia coli. I. Active transport and utilization of beta-glucosides. J Bacteriol93:254–263
    [Google Scholar]
  37. Schnetz K., Rak B.. 1988; Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. EMBO J7:3271–3277
    [Google Scholar]
  38. Schnetz K., Toloczyki C., Rak B.. 1987; Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol169:2579–2590
    [Google Scholar]
  39. Schnetz K., Stulke J., Gertz S., Kruger S., Krieg M., Hecker M., Rak B.. 1996; LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol178:1971–1979
    [Google Scholar]
  40. Tobisch S., Glaser P., Kruger S., Hecker M.. 1997; Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis. J Bacteriol179:496–506
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1555
Loading
/content/journal/micro/10.1099/00221287-146-7-1555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error