1887

Abstract

A regulon from that plays a role in the utilization of β-glucosides has been isolated, sequenced and subjected to sequence analysis. This regulon encodes a β-glucoside-specific Enzyme II (EII) component () of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and a phospho-β-glucosidase () which is responsible for the breakdown of the phospho-β-glucosides within the cell. Both the and gene products have significant similarity with proteins that have similar functions from , , , , and . The potential functions of the BglP and BglA proteins are supported by phenotypic data from both and . A chromosomal deletion in spanning the and genes resulted in a strain that was unable to hydrolyse the β-glucoside aesculin in the presence of glucose. When glucose was removed from the medium, the deletion strain regained the ability to break down aesculin. These data suggest that possesses an alternative mechanism from the one described in this report for breaking down β-glucosides. This second mechanism was repressed by glucose while the regulon described here was not. Complementation studies in CC118 also suggest a potential role for this regulon in the utilization of other β-glucosides. When a plasmid containing the 8 kb β-glucoside-specific regulon was transformed into CC118, the transformed strain was able to break down the β-glucoside arbutin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1555
2000-07-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461555a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1555&mimeType=html&fmt=ahah

References

  1. Amster-Choder, O., Houman, F. & Wright, A. ( 1989; ). Protein phosphorylation regulates transcription of the beta-glucoside utilization operon in E. coli. Cell 58, 847-855.[CrossRef]
    [Google Scholar]
  2. Anonymous ( 1984; ). E. coli TB1 – host for pUC plasmids. Focus 6, 7.
    [Google Scholar]
  3. Bardowski, J., Ehrlich, S. D. & Chopin, A. ( 1994; ). BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in beta-glucoside utilization in Lactococcus lactis. J Bacteriol 176, 5681-5685.
    [Google Scholar]
  4. Beloin, C., Hirschbein, L. & Le Hegarat, F. ( 1996; ). Suppression of the Bgl+ phenotype of a delta hns strain of Escherichia coli by a Bacillus subtilis antiterminator binding site. Mol Gen Genet 250, 761-766.
    [Google Scholar]
  5. Bramley, H. F. & Kornberg, H. L. ( 1987; ). Nucleotide sequence of bglC, the gene specifying EnzymeIIbgl of the PEP:sugar phosphotransferase system in Escherichia coli K12, and overexpression of the gene product. J Gen Microbiol 133, 563-573.
    [Google Scholar]
  6. Brehm, K., Ripio, M. T., Kreft, J. & Vasquez-Boland, J. A. ( 1999; ). The bvr locus of Listeria monocytogenes mediates virulence gene repression by β-glucosides. J Bacteriol 181, 5024-5032.
    [Google Scholar]
  7. Brown, G. D. & Thomson, J. A. ( 1998; ). Isolation and characterisation of an aryl-beta-d-glucoside uptake and utilisation system (abg) from the gram-positive ruminal Clostridium species C. longisporum. Mol Gen Genet 257, 213-218.[CrossRef]
    [Google Scholar]
  8. Brunker, P., Hils, M., Altenbuchner, J. & Mattes, R. ( 1998; ). The mannitol utilization genes of Pseudomonas fluorescens are regulated by an activator: cloning, nucleotide sequence and expression of the mtlR gene. Gene 215, 19-27.[CrossRef]
    [Google Scholar]
  9. Chen, Q. & Amster-Choder, O. ( 1998; ). BglF, the sensor of the bgl system and the beta-glucosides permease of Escherichia coli: evidence for dimerization and intersubunit phosphotransfer. Biochemistry 37, 8714-8723.[CrossRef]
    [Google Scholar]
  10. Chen, Q., Arents, J. C., Bader, R., Postma, P. W. & Amster-Choder, O. ( 1997; ). BglF, the sensor of the E. coli bgl system, uses the same site to phosphorylate both a sugar and a regulatory protein. EMBO J 16, 4617-4627.[CrossRef]
    [Google Scholar]
  11. Curtiss, R.III ( 1965; ). Chromosomal aberrations associated with mutations to bacteriophage resistance in Escherichia coli. J Bacteriol 89, 28-40.
    [Google Scholar]
  12. De Vos, W. M. ( 1987; ). Gene cloning and expression in lactic streptococci. FEMS Microbiol Rev 46, 281-295.[CrossRef]
    [Google Scholar]
  13. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef]
    [Google Scholar]
  14. Dower, W. J. ( 1990; ). Electroporation of bacteria: a general approach to genetic transformation.Genetic Engineering – Principles and Methods, 275-296. New York: Plenum.
  15. Ferretti, J. J., Russell, R. R. & Dao, M. L. ( 1989; ). Sequence analysis of the wall-associated protein precursor of Streptococcus mutans antigen A. Mol Microbiol 3, 469-478.[CrossRef]
    [Google Scholar]
  16. Fox, C. F. & Wilson, G. ( 1968; ). The role of a phosphoenolpyruvate-dependent kinase system in beta-glucoside catabolism in Escherichia coli. Proc Natl Acad Sci U S A 59, 988-995.[CrossRef]
    [Google Scholar]
  17. Hamada, S. & Slade, H. D. ( 1980; ). Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44, 331-384.
    [Google Scholar]
  18. el Hassouni, M., Chippaux, M. & Barras, F. ( 1990; ). Analysis of the Erwinia chrysanthemi arb genes, which mediate metabolism of aromatic beta-glucosides. J Bacteriol 172, 6261-6267.
    [Google Scholar]
  19. el Hassouni, M., Henrissat, B., Chippaux, M. & Barras, F. ( 1992; ). Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans. J Bacteriol 174, 765-777.
    [Google Scholar]
  20. Kruger, S. & Hecker, M. ( 1995; ). Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. J Bacteriol 177, 5590-5597.
    [Google Scholar]
  21. Kruger, S., Gertz, S. & Hecker, M. ( 1996; ). Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J Bacteriol 178, 2637-2644.
    [Google Scholar]
  22. Lai, X., Davis, F. C., Hespell, R. B. & Ingram, L. O. ( 1997; ). Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides. Appl Environ Microbiol 63, 355-363.
    [Google Scholar]
  23. Le Coq, D., Lindner, C., Kruger, S., Steinmetz, M. & Stulke, J. ( 1995; ). New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol 177, 1527-1535.
    [Google Scholar]
  24. Macrina, F. L., Evans, R. P., Tobian, J. A., Hartley, D. L., Clewell, D. B. & Jones, K. R. ( 1983; ). Novel shuttle plasmid vehicles for Escherichia–Streptococcus transgeneric cloning. Gene 25, 145-150.[CrossRef]
    [Google Scholar]
  25. Manoil, C. & Beckwith, J. ( 1985; ). TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci USA 82, 8129-8133.[CrossRef]
    [Google Scholar]
  26. Marasco, R., Muscariello, L., Varcamonti, M., De Felice, M. & Sacco, M. ( 1998; ). Expression of the bglH gene of Lactobacillus plantarum is controlled by carbon catabolite repression. J Bacteriol 180, 3400-3404.
    [Google Scholar]
  27. Marck, C. ( 1988; ). ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16, 1829-1836.[CrossRef]
    [Google Scholar]
  28. Moran, C. P.Jr, Lang, N., LeGrice, S. F., Lee, G., Stephens, M., Sonenshein, A. L., Pero, J. & Losick, R. ( 1982; ). Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 186, 339-346.[CrossRef]
    [Google Scholar]
  29. Murchison, H. H., Barrett, J. F., Cardineau, G. A. & Curtiss, R.III ( 1986; ). Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect Immun 54, 273-282.
    [Google Scholar]
  30. Perez-Casal, J., Caparon, M. G. & Scott, J. R. ( 1991; ). Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol 173, 2617-2624.
    [Google Scholar]
  31. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543-594.
    [Google Scholar]
  32. Princiotta, M. F., Lenz, L. L., Bevan, M. J. & Staerz, U. D. ( 1998; ). H2-M3 restricted presentation of a Listeria-derived leader peptide. J Exp Med 187, 1711-1719.[CrossRef]
    [Google Scholar]
  33. Rutberg, B. ( 1997; ). Antitermination of transcription of catabolic operons. Mol Microbiol 23, 413-421.[CrossRef]
    [Google Scholar]
  34. Saier, M. H., Jr, Yamada, M., Erni, B. & 7 other authors ( 1988; ). Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons. FASEB J 2, 199–208.
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Schaefler, S. ( 1967; ). Inducible system for the utilization of beta-glucosides in Escherichia coli. I. Active transport and utilization of beta-glucosides. J Bacteriol 93, 254-263.
    [Google Scholar]
  37. Schnetz, K. & Rak, B. ( 1988; ). Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. EMBO J 7, 3271-3277.
    [Google Scholar]
  38. Schnetz, K., Toloczyki, C. & Rak, B. ( 1987; ). Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 169, 2579-2590.
    [Google Scholar]
  39. Schnetz, K., Stulke, J., Gertz, S., Kruger, S., Krieg, M., Hecker, M. & Rak, B. ( 1996; ). LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178, 1971-1979.
    [Google Scholar]
  40. Tobisch, S., Glaser, P., Kruger, S. & Hecker, M. ( 1997; ). Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis. J Bacteriol 179, 496-506.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1555
Loading
/content/journal/micro/10.1099/00221287-146-7-1555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error