1887

Abstract

A surrogate expression system, based on fusions to the bacterial reporter gene, was used to identify genes that encode exported proteins and the promoter regions required for their expression in the heterologous host . To assess these results in the context of the complete genome sequence, the corresponding genes were identified and computational algorithms were employed to identify signal peptide (SP), transmembrane domain and membrane lipoprotein attachment motifs. This information was used to predict the subset of genes that encode exported proteins. Of the 34 genes identified by the method, 22 were classified to encode potential soluble secreted proteins. Among these, 14 genes may encode novel secreted proteins. Six of the remaining 12 genes were predicted to encode membrane lipoproteins and an additional six to encode integral membrane proteins. Published observations of proteins proven to be secreted into culture filtrates were reviewed to further characterize the mycobacterial SP motif. It was concluded that mycobacterial SPs are comparable in size to Gram-positive SPs, but certain features are different. In particular, arginine was the predominant N-terminally positively charged amino acid in contrast to lysine in the Gram-positives. The hydrophobic transmembrane segment of the SP was dominated by alanine, in contrast to leucine. At the C-terminal end of the SPs, the (−3, −1) rule (AXA motif) holds, with alanine as the dominant amino acid in both positions, being most dominant in the (−1) position. A high proportion of mature sequences start with aspartic acid in the (+1) position and proline in the (+2) position – the DP motif. The authors propose that the DP sequence serves as a sorting signal, following translocation and cleavage by signal peptidase I. Alternatively, the DP motif may be part of the recognition site for the signal peptidase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1525
2000-07-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461525a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1525&mimeType=html&fmt=ahah

References

  1. Arruda S., Bomfim G., Knights R., Huima-Byron T., Riley L. W.. 1993; Cloning of an Mycobacterium tuberculosis DNA fragment associated with entry and survival inside cells. Science261:1454–1457[CrossRef]
    [Google Scholar]
  2. Belisle J. T., Vissa V. D., Sievert T., Takayama K., Brennan P. J., Besra G. S.. 1997; Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science276:1420–1422[CrossRef]
    [Google Scholar]
  3. Bigi F., Espitia C., Alito A., Zumarraga M., Romano M. I., Cravero S., Cataldi A.. 1997; A novel 27 kDa lipoprotein antigen from Mycobacterium bovis. Microbiology143:3599–3605[CrossRef]
    [Google Scholar]
  4. Boyd D., Traxler B., Beckwith J.. 1993; Analysis of the topology of a membrane protein by using a minimum number of alkaline phosphatase fusions. J Bacteriol175:553–556
    [Google Scholar]
  5. Chubb A. J., Woodman Z. L., da Silva T., Hoffmann H. J., Scholle R. R., Ehlers M. R.. 1998; Identification of Mycobacterium tuberculosis signal sequences that direct the export of a leaderless beta-lactamase gene product in Escherichia coli. Microbiology144:1619–1629[CrossRef]
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J..22 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  7. Coler R. N., Skeiky Y. A., Vedvick T., Bement T., Ovendale P., Campos-Neto A., Alderson M. R., Reed S. G.. 1998; Molecular cloning and immunologic reactivity of a novel low molecular mass antigen of Mycobacterium tuberculosis. J Immunol161:2356–2364
    [Google Scholar]
  8. De Bruyn J., Huygen K., Bosmans R., Fauville M., Lippens R., Van Vooren J. P., Falmagne P., Weckx M., Wiker H. G., Harboe M.. 1987; Purification, characterization and identification of a 32 kDa protein antigen of Mycobacterium bovis BCG. Microb Pathog2:351–366[CrossRef]
    [Google Scholar]
  9. Freer G., Florio W., Dalla C. B., Bottai D., Batoni G., Maisetta G., Senesi S., Campa M.. 1998; Identification and molecular cloning of a novel secretion antigen from Mycobacterium tuberculosis and Mycobacterium bovis BCG. Res Microbiol149:265–275[CrossRef]
    [Google Scholar]
  10. Gomez M., Johnson S., Gennaro M. L.. 2000; Identification of secreted proteins of Mycobacterium tuberculosis by a bioinformatic approach. Infect Immun68:2323–2327[CrossRef]
    [Google Scholar]
  11. Harboe M., Nagai S., Patarroyo M. E., Torres M. L., Ramirez C., Cruz N.. 1986; Properties of proteins MPB64, MPB70, and MPB80 of Mycobacterium bovis BCG. Infect Immun52:293–302
    [Google Scholar]
  12. von Heijne G., Abrahmsen L.. 1989; Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Lett244:439–446[CrossRef]
    [Google Scholar]
  13. Jacobs W. R. J., Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R.. 1991; Genetic systems for mycobacteria. Methods Enzymol204:537–555
    [Google Scholar]
  14. Kohler S., Leimeister-Wachter M., Chakraborty T., Lottspeich F., Goebel W.. 1990; The gene coding for protein p60 of Listeria monocytogenes and its use as a specific probe for Listeria monocytogenes. Infect Immun58:1943–1950
    [Google Scholar]
  15. Kuhn M., Goebel W.. 1989; Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun57:55–61
    [Google Scholar]
  16. Lim E. M., Rauzier J., Timm J., Torrea G., Murray A., Gicquel B., Portnoi D.. 1995; Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J Bacteriol177:59–65
    [Google Scholar]
  17. Manoil C., Beckwith J.. 1986; A genetic approach to analyzing membrane protein topology. Science233:1403–1408[CrossRef]
    [Google Scholar]
  18. Manoil C., Boyd D., Beckwith J.. 1988; Molecular genetic analysis of membrane protein topology. Trends Genet4:223–226[CrossRef]
    [Google Scholar]
  19. Mukamolova G. V., Kaprelyants A. S., Young D. I., Young M., Kell D. B.. 1998; A bacterial cytokine. Proc Natl Acad Sci USA95:8916–8921[CrossRef]
    [Google Scholar]
  20. Nagai S., Wiker H. G., Harboe M., Kinomoto M.. 1991; Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect Immun59:372–382
    [Google Scholar]
  21. Nielsen H., Krogh A.. 1998; Prediction of signal peptides and signal anchors by a hidden Markov model. InProceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology pp.122–130Edited by Glasgow J..others1-57735-053-7
    [Google Scholar]
  22. Nielsen H., Engelbrecht J., Brunak S., von Heijne G.. 1997; A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst8:581–599[CrossRef]
    [Google Scholar]
  23. Oftung F., Wiker H. G., Deggerdal A., Mustafa A. S.. 1997; A novel mycobacterial antigen relevant to cellular immunity belongs to a family of secreted lipoproteins. Scand J Immunol46:445–451[CrossRef]
    [Google Scholar]
  24. Prinz W. A., Beckwith J.. 1994; Gene fusion analysis of membrane protein topology: a direct comparison of alkaline phosphatase and beta-lactamase fusions. J Bacteriol176:6410–6413
    [Google Scholar]
  25. Prinz W. A., Spiess C., Ehrmann M., Schierle C., Beckwith J.. 1996; Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. EMBO J15:5209–5217
    [Google Scholar]
  26. Rauzier J., Moniz P., Gicquel-Sanzey B.. 1988; Complete nucleotide sequence of pAL5000, a plasmid from Mycobacterium fortuitum. Gene71:315–321[CrossRef]
    [Google Scholar]
  27. Riley M.. 1993; Functions of the gene products of Escherichia coli. Microbiol Rev57:862–952
    [Google Scholar]
  28. Riley M.. 1998; Systems for categorizing functions of gene products. Curr Opin Struct Biol8:388–392[CrossRef]
    [Google Scholar]
  29. Romain F., Laqueyrerie A., Militzer P., Pescher P., Chavarot P., Lagranderie M., Auregan G., Gheorghiu M., Marchal G.. 1993; Identification of a Mycobacterium bovis BCG 45/47-kilodalton antigen complex, an immunodominant target for antibody response after immunization with living bacteria. Infect Immun61:742–750
    [Google Scholar]
  30. Sarmientos P., Sylvester J. E., Contente S., Cashel M.. 1983; Differential stringent control of the tandem E. coli ribosomal RNA promoters from the rrnA operon expressed in vivo in multicopy plasmids. Cell32:1337–1346[CrossRef]
    [Google Scholar]
  31. Skeiky Y. A., Lodes M. J., Guderian J. A., Mohamath R., Bement T., Alderson M. R., Reed S. G.. 1999; Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Infect Immun67:3998–4007
    [Google Scholar]
  32. Sonnenberg M. G., Belisle J. T.. 1997; Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun65:4515–4524
    [Google Scholar]
  33. van Soolingen D., Hermans P. W., de Haas P. E., Soll D. R., van Embden J. D.. 1991; Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol29:2578–2586
    [Google Scholar]
  34. Ulstrup J. C., Jeansson S., Wiker H. G., Harboe M.. 1995; Relationship of secretion pattern and MPB70 homology with osteoblast-specific factor 2 to osteitis following Mycobacterium bovis BCG vaccination. Infect Immun63:672–675
    [Google Scholar]
  35. Webb J. R., Vedvick T. S., Alderson M. R., Guderian J. A., Jen S. S., Ovendale P. J., Johnson S. M., Reed S. G., Skeiky Y. A.. 1998; Molecular cloning, expression, and immunogenicity of MTB12, a novel low-molecular-weight antigen secreted by Mycobacterium tuberculosis. Infect Immun66:4208–4214
    [Google Scholar]
  36. Weldingh K., Rosenkrands I., Jacobsen S., Rasmussen P. B., Elhay M. J., Andersen P.. 1998; Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect Immun66:3492–3500
    [Google Scholar]
  37. Wiker H. G., Harboe M., Nagai S., Patarroyo M. E., Ramirez C., Cruz N.. 1986; MPB59, a widely cross-reacting protein of Mycobacterium bovis BCG. Int Arch Allergy Appl Immunol81:307–314[CrossRef]
    [Google Scholar]
  38. Wiker H. G., Sletten K., Nagai S., Harboe M.. 1990; Evidence for three separate genes encoding the proteins of the mycobacterial antigen 85 complex. Infect Immun58:272–274
    [Google Scholar]
  39. Wiker H. G., Michell S. L., Hewinson R. G., Spierings E., Nagai S., Harboe M.. 1999a; Cloning, expression and significance of MPT53 for identification of secreted proteins of Mycobacterium tuberculosis. Microb Pathog26:207–219[CrossRef]
    [Google Scholar]
  40. Wiker H. G., Spierings E., Kolkman M. A. B., Ottenhoff T. H. M., Harboe M.. 1999b; The mammalian cell entry operon (mce1) of Mycobacterium leprae and Mycobacterium tuberculosis. Microb Pathog27:173–177[CrossRef]
    [Google Scholar]
  41. Yamaguchi K., Yu F., Inouye M.. 1988; A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell53:423–432[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1525
Loading
/content/journal/micro/10.1099/00221287-146-7-1525
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error