1887

Abstract

Heat-shock proteins (Hsps) from various origins are known to share a conserved structure and are assumed to be key partners in the biogenesis of proteins. Fractionation of the mycobacterial Hsp60, a 65 kDa protein also called Cpn60, from BCG zinc-deficient culture filtrate on phenyl-Sepharose followed by Western blotting revealed the existence of four Hsp60-1 and Hsp60-2 forms, based on their hydrophobicity behaviour. Hsp60-2 species were further purified by ion-exchange chromatography and partial amino acid sequences of cyanogen bromide (CNBr) peptides of purified Hsp60-2 species showed identity with the amino acid sequence deduced from the gene, indicating that the various Hsp60-2 forms are encoded by the same gene. In addition, the mycobacterial Hsp60-2 was overexpressed in using the pRR3Hsp60-2 plasmid and analysed on phenyl-Sepharose. The elution pattern of the recombinant Hsp60-2, as well as that of GroEL, was similar to that of the native Hsp60-2 from the culture filtrate of BCG and entirely different from that of the mycobacterial antigen 85. Extraction of mycobacterial Hsp60-2 forms, recombinant BCG Hsp60-2 and GroEL with organic solvents releases various amounts of non-covalently bound lipids. The presence of lipids on Hsp60-2 was confirmed by labelling BCG with radioactive palmitate. The radioactivity was specifically associated with Hsp60 in the aqueous phase and the 19 and 38 kDa lipoproteins in the Triton X-114 phase. Analysis of the lipids extracted from purified Hsp60-2, recombinant BCG Hsp60-2 and GroEL by TLC showed the same pattern for all the samples. Acid methanolysis of the lipids followed by GC analysis led to the identification of C, C and C as the major fatty acyl constituents, and of methylglycoside in these proteins. Altogether, these data demonstrate that lipids are non-covalently bound to Hsp60-2 and homologous proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1513
2000-07-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461513a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1513&mimeType=html&fmt=ahah

References

  1. Ahsan C. R., Sasaki J.. 1991; A 64 kDa protein from Mycobacterium bovis BCG shares the same antigenic determinants with line 10 hepatoma cells and has anti-line 10 tumour activity. FEBS Lett288:77–80[CrossRef]
    [Google Scholar]
  2. Ahsan C. R., Sasaki J.. 1993; The Mycobacterium bovis BCG 64 kDa surface protein is antigenically shared with different mouse tumour cells and has anti-tumour activity in immunized mice. Immunol Lett36:235–238[CrossRef]
    [Google Scholar]
  3. Anderson D., Barry M., Buchanan T.. 1988; Exact definition of species-specific and cross-reactive epitopes of the 65-Kilodalton protein of Mycobacterium leprae using synthetic peptides. J Immunol141:607–613
    [Google Scholar]
  4. Bensadoun A., Weinstein D.. 1976; Assay of proteins in the presence of interfering materials. Anal Biochem70:241–250[CrossRef]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917[CrossRef]
    [Google Scholar]
  6. Bordier C.. 1981; Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem256:1604–1607
    [Google Scholar]
  7. Braibant M., Lefèvre Ph., de Wit L., Ooms J., Peirs P., Huygen K., Wattiez R., Content J.. 1996; Identification of a second Mycobacterium tuberculosis gene cluster encoding proteins of an ABC phosphate transporter. FEBS Lett394:206–212[CrossRef]
    [Google Scholar]
  8. Braig K., Otwinowski Z., Hedge R., Boisvert D. C., Joachimiak A., Horwich A., Sigler P. B.. 1994; The crystal structure of the bacterial chaperonin GroEL at 2·8 Å. Nature371:578–586[CrossRef]
    [Google Scholar]
  9. Brasseur R.. 1991; Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J Biol Chem266:16120–16127
    [Google Scholar]
  10. De Bruyn J., Bosmans R., Turneer M., Weckx M., Nyabenda J., Van Vooren J. P., Falmagne P., Wiker H. G., Harboe M.. 1987a; Purification, partial characterization and identification of a skin-reactive protein antigen of Mycobacterium bovis BCG. Infect Immun55:245–252
    [Google Scholar]
  11. De Bruyn J., Hyugen K., Bosmans R..8 other authors 1987b; Purification of a 32 kDa protein antigen of Mycobacterium bovis BCG. Microb Pathog2:351–366[CrossRef]
    [Google Scholar]
  12. Dittmer J. C. F., Lester R. L.. 1964; A simple specific spray for the detection of phospholipids on thin-layer chromatography. J Lipid Res5:126–127
    [Google Scholar]
  13. Fenton W. A., Kashi Y., Furtak K., Horwich A. L.. 1994; Residues in chaperonin GroEL required for polypeptide binding and release. Nature371:614–619[CrossRef]
    [Google Scholar]
  14. Frydman J., Hartl F. U.. 1996; Principles of chaperone-assisted protein folding: difference between in vitro and in vivo mechanisms. Science272:1497–1502[CrossRef]
    [Google Scholar]
  15. Harboe M., Quayle A. J.. 1991; Heat shock proteins : friend and foe?. Clin Exp Immunol86:2–5
    [Google Scholar]
  16. Hartl F. U.. 1996; Molecular chaperones in cellular protein folding. Nature381:571–580[CrossRef]
    [Google Scholar]
  17. Jäättelä M., Wissing D.. 1992; Emerging role of heat shock proteins in biology and medicine. Ann Med24:249–258[CrossRef]
    [Google Scholar]
  18. Kaufmann S. H. E.. 1990; Heat shock proteins and the immune response. Immunol Today11:129–136[CrossRef]
    [Google Scholar]
  19. Kong T. H., Coates A. R. M., Butcher C. J., Shinnick T. M.. 1993; Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci USA90:2608–2612[CrossRef]
    [Google Scholar]
  20. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  21. Liberek K., Georgopoulos C.. 1993; Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock protein. Proc Natl Acad Sci USA90:11019–11023[CrossRef]
    [Google Scholar]
  22. Martin J., Horwich A. L., Hartl F. U.. 1988; Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science258:995
    [Google Scholar]
  23. Matsudaira P.. 1987; Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem262:10035
    [Google Scholar]
  24. Morimoto R. I.. 1993; Cells in stress: transcriptional activation of heat shock genes. Science259:1409–1410[CrossRef]
    [Google Scholar]
  25. Netzer W. J., Hartl F. U.. 1998; Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem Sci23:68–73[CrossRef]
    [Google Scholar]
  26. Ortalo-Magné A., Lemassu A., Lanéelle M.-A., Bardou F., Silve G., Gounon P., Marchal G., Daffé M.. 1996; Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol178:456–461
    [Google Scholar]
  27. Pearson W. R., Lipman D. J.. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA85:2444–2448[CrossRef]
    [Google Scholar]
  28. Radolf J. D., Chamberlain N. R., Clausell A., Norgard M. V.. 1988; Identification and localisation of integral membrane proteins of virulent Treponema pallidum subsp. pallidum by phase partitioning with the nonionic detergent Triton X-114. Infect Immun56:490–498
    [Google Scholar]
  29. Rahman M., Brasseur R.. 1994; WinMGM: a fast CPK molecular graphics program for analysing molecular structure. J Mol Graphics12:212–218[CrossRef]
    [Google Scholar]
  30. Ranes M., Rauzier J., Lagranderie M., Gheorghiu M., Gicquel B.. 1990; Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a ‘mini’ MycobacteriumEscherichia coli shuttle vector. J Bacteriol172:2793–2797
    [Google Scholar]
  31. Sali A., Blundell T. L.. 1993; Comparative protein modelling by satisfaction spatial restraints. J Mol Biol234:779–815[CrossRef]
    [Google Scholar]
  32. Spector T. H.. 1978; Refinement of the Coomassie blue method of protein quantitation. Anal Biochem86:142–146[CrossRef]
    [Google Scholar]
  33. Stone L. K., Williams K. R.. 1993; Enzymatic digestion of proteins and HPLC peptide isolation. In A Practical Guide to Protein and Peptide Purification for Microsequencing pp.43–54Edited by Matsudaira P.. San Diego & London: Academic Press;
    [Google Scholar]
  34. Sweeley C. C., Bentley R., Makita M., Wells W. W.. 1963; Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc85:2497–2507[CrossRef]
    [Google Scholar]
  35. Thole J. E. R., Van Der Zee R.. 1990; The 65 kDa antigen: molecular studies on a ubiquitous antigen. In Molecular Biology of the Mycobacteria pp.37–62Edited by McFadden J.. New York: Academic Press;
    [Google Scholar]
  36. Thole J. E. R., Keulen W. J., Kolk A. H. J., Groothuis D. G., Berwald L. G., Tiesjema R. H., Van Embden J. D. A.. 1987; Characterization, sequence determination, and immunogenicity of a 65-Kilodalton protein of Mycobacterium bovis (BCG) expressed in Escherichia coli K-12. Infect Immun55:1466–1475
    [Google Scholar]
  37. Thole J. E. R., Hinderson P., De Bruyn J., Cremers F., Van Der Zee J., De Cock H., Tommassen J., Van Eden W., Van Embden D. A.. 1988a; Antigenic relatedness of a strongly immunogenic 65 kDa mycobacterial protein antigen with a similarly sized ubiquitous bacterial common antigen. Microb Pathog4:71–83[CrossRef]
    [Google Scholar]
  38. Thole J. E. R., Van Schooten W. C. A., Keulen W. J., Hermans P. W. M., Janson A. A. M., De Vries R. R. P., Kolk A. H. J., Van Embden J. D. A.. 1988b; Use of recombinant antigens expressed in Escherichia coli K-12 to map B-cell and T-cell epitopes on the immunodominant 65-kilodalton protein of Mycobacterium bovis BCG. Infect Immun56:1633–1640
    [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J.. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA76:4350–4354[CrossRef]
    [Google Scholar]
  40. Van Eden W., Hogervorst E. J. M., Van Der Zee R., Van Embden J. D. A., Hensen E. J., Cohen I. R.. 1989; The mycobacterial 65 kDa heat-shock protein and autoimmune arthritis. Rheumatol Int9:187–191[CrossRef]
    [Google Scholar]
  41. Vik S. B., Capaldi R. A.. 1977; Lipid requirements for cytochrome c oxidase activity. Biochemistry16:5755–5759[CrossRef]
    [Google Scholar]
  42. Welch W. J., Winfield J. B.. 1992; The stress response and the immune system. In Inflammation: Basic Principles and Clinical Correlates pp.841–857Edited by Gallin J. I., Goldstein I. M., Smyderman R.. New York: Raven Press;
    [Google Scholar]
  43. Young D. B.. 1992; Heat-shock proteins: immunity and autoimmunity. Immunology4:396–400
    [Google Scholar]
  44. Young D. B., Garbe T. R.. 1991; Lipoprotein antigens of Mycobacterium tuberculosis. Res Microbiol142:55–65[CrossRef]
    [Google Scholar]
  45. Ziemienowicz A., Skowyra D., Zeiltra-Ryalls J., Fayet O., Georgopoulos C., Zylicz M.. 1993; Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase: different mechanisms for the same activity. J Biol Chem268:25425–25431
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1513
Loading
/content/journal/micro/10.1099/00221287-146-7-1513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error