1887

Abstract

VanB-type vancomycin resistance is encoded by the gene cluster, which disseminates by horizontal gene transfer and clonal spread of vancomycin-resistant enterococci (VRE). Genetic linkage of the gene cluster to transposon Tn and the insertion sequences IS and IS-like has previously been shown. In this study linkage of defined gene cluster subtypes to these elements was examined. All the subtype strains studied (=14) revealed co-hybridization of and Tn, whereas the strains of (=8) and (=1) subtypes were Tn negative. Conjugative cotransfer of the gene cluster and Tn was demonstrated for two strains. DNA sequencing of the –ORFC region in strains confirmed that the gene cluster is an integral part of Tn. No general pattern of linkage was observed with regard to IS and IS-like. Two novel insertion sequences were identified in specific subtype strains. (i) A 1611 bp element (ISEnfa) was detected in the left flank of Tn. Its insertion site, lack of terminal inverted and direct repeats, and two conserved motifs in its putative transposase all conform to the conventions of the IS family. (ii) A 787 bp element (ISEnfa) was detected in the intergenic region. Its ORF encoded a putative protein with 60–70% identity to transposases of the IS family. No further copies of ISEnfa were found by colony hybridization of 181 enterococcal isolates, whereas ISEnfa was found in four additional strains from the USA. The five strains had identical ISEnfa element insertion sites, and Tn was located downstream from a gene conferring high-level ampicillin resistance. These isolates showed related PFGE patterns, suggesting possible clonal spread of a VRE strain harbouring a Tn–ISEnfaelement linked to a gene conferring ampicillin resistance

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1469
2000-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461469a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1469&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Arthur M., Molinas C., Depardieu F., Courvalin P. 1993; Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 175:117–127
    [Google Scholar]
  3. Beuzón C. R., Casadesús J. 1997; Conserved structure of IS200 elements in Salmonella. Nucleic Acids Res 25:1355–1361 [CrossRef]
    [Google Scholar]
  4. Brynestad S., Synstad B., Granum P. E. 1997; The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains. Microbiology 143:2109–2115 [CrossRef]
    [Google Scholar]
  5. Carias L. L., Rudin S. D., Donskey C. J., Rice L. B. 1998; Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J Bacteriol 180:4426–4434
    [Google Scholar]
  6. Casadesus J., Roth J. R. 1989; Absence of insertions among spontaneous mutants of Salmonella typhimurium. Mol Gen Genet 216:210–216 [CrossRef]
    [Google Scholar]
  7. Dahl K. H., Simonsen G. S., Olsvik Ø. , Sundsfjord A. 1999; Heterogeneity in the vanB gene cluster of genomically diverse clinical strains of vancomycin-resistant enterococci. Antimicrob Agents Chemother 43:1105–1110
    [Google Scholar]
  8. Evers S., Courvalin P. 1996; Regulation of VanB-type vancomycin resistance gene expression by the VanSB–VanRB two-component regulatory system in Enterococcus faecalis V583. J Bacteriol 178:1302–1309
    [Google Scholar]
  9. Evers S., Reynolds P. E., Courvalin P. 1994; Sequence of the vanB and ddl genes encoding d-alanine:d-lactate and d-alanine:d-alanine ligases in vancomycin-resistant Enterococcus faecalis V583. Gene 140:97–102 [CrossRef]
    [Google Scholar]
  10. Franke A. E., Clewell D. B. 1981; Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of ‘conjugal’ transfer in the absence of a conjugative plasmid. J Bacteriol 145:494–502
    [Google Scholar]
  11. Galas D. J., Chandler M. 1989; Bacterial insertion sequences. In Mobile DNA pp. 109–162Edited by Berg D. E., Howe M. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Handwerger S., Skoble J. 1995; Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 39:2446–2453 [CrossRef]
    [Google Scholar]
  13. Handwerger S., Skoble J., Discotto L. F., Pucci M. J. 1995; Heterogeneity of the vanA gene cluster in clinical isolates of enterococci from the Northeastern United States. Antimicrob Agents Chemother 39:362–368 [CrossRef]
    [Google Scholar]
  14. Hanrahan J. A., Hoyen C., Rice L. B. 1998; Evidence for the geographic dispersion of a transferable mobile element conferring resistance to ampicillin and vancomycin in VanB E. faecium. In Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy p. 95Washington, DCAmerican Society for Microbiology
    [Google Scholar]
  15. Hernandez Perez M., Fomukong N. G., Hellyer T., Brown I. N., Dale J. W. 1994; Characterization of IS110, a highly mobile genetic element from Mycobacterium avium. Mol Microbiol 12:717–724 [CrossRef]
    [Google Scholar]
  16. Hodel-Christian S. L., Murray B. E. 1991; Characterization of the gentamicin resistance transposon Tn5281 from Enterococcus faecalis and comparison to staphylococcal transposons Tn4001 and Tn4031. Antimicrob Agents Chemother 35:1147–1152 [CrossRef]
    [Google Scholar]
  17. Leclercq R. 1997; Enterococci acquire new kinds of resistance. Clin Infect Dis 24:S80–S84 [CrossRef]
    [Google Scholar]
  18. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774
    [Google Scholar]
  19. Moran C. P. Jr, Lang N., LeGrice S. F. J., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 186:339–346 [CrossRef]
    [Google Scholar]
  20. Patel R., Uhl J. R., Kohner P., Hopkins M. K., Steckelberg J. M., Kline B., Cockerill F. R. III 1998; DNA sequence variation within vanA, vanB, vanC-1, and vanC-2/3 genes of clinical Enterococcus isolates. Antimicrob Agents Chemother 42:202–205
    [Google Scholar]
  21. Poyart C., Trieu-Cuot P. 1994; Heterogeneric conjugal transfer of the pheromone-responsive plasmid pIP964 (IncHlyI) of Enterococcus faecalis in the apparent absence of pheromone induction. FEMS Microbiol Lett 122:173–180 [CrossRef]
    [Google Scholar]
  22. Quintiliani R. Jr, Courvalin P. 1996; Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene 172:1–8 [CrossRef]
    [Google Scholar]
  23. Rice L. B., Carias L. L. 1998; Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J Bacteriol 180:714–721
    [Google Scholar]
  24. Rice L. B., Thorisdottir A. S. 1994; The prevalence of sequences homologous to IS256 in clinical enterococcal isolates. Plasmid 32:344–349 [CrossRef]
    [Google Scholar]
  25. Rice L. B., Carias L. L., Marshall S. H. 1995; Tn5384, an IS256-based composite mobile element in Enterococcus faecalis. In Genetics of Streptococci, Enterococci and Lactococci pp. 71–75Edited by Ferretti J. J., Gilmore M. S., Klaenhammer T. R., Brown F. Basel: S. Karger;
    [Google Scholar]
  26. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B. 1989; In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 33:1588–1591 [CrossRef]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Schouten M. A., Hoogkamp-Korstanje J. A. A., Kraak W. A. G., Bartels C. J. M., Roelofs-Willemse H. J. G. R., Voss A. 1999; Vancomycin-resistant enterococci (VRE) prevalence in Europe. Clin Microbiol Infect 5:121
    [Google Scholar]
  29. Simonsen G. S., Myhre M. R. M., Dahl K. H., Olsvik Ø. , Sundsfjord A. 2000; Typability of Tn1546-like elements in vancomycin resistant enterococci using long-range PCRs and specific analysis of polymorpic regions. Microb Drug Resist (in press)
    [Google Scholar]
  30. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  31. Trieu-Cuot P., Carlier C., Courvalin P. 1988; Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli. J Bacteriol 170:4388–4391
    [Google Scholar]
  32. Williamson R., Al-Obeid S., Shlaes J. H., Goldstein F. W., Shlaes D. M. 1989; Inducible resistance to vancomycin in Enterococcus faecalis D366. J Infect Dis 159:1095–1104 [CrossRef]
    [Google Scholar]
  33. Woodford N., Morrison D., Johnson A. P., Bateman A. C., Hastings J. G. M., Elliott T. S. J., Cookson B. 1995; Plasmid-mediated vanB glycopeptide resistance in enterococci. Microb Drug Resist 1:235–240 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-6-1469
Loading
/content/journal/micro/10.1099/00221287-146-6-1469
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error