1887

Abstract

The gene is located adjacent to and divergently transcribed from the response regulator gene, , that activates the transcription of the gene, which in turn activates transcription of the daunorubicin biosynthesis genes in . Gene disruption and replacement of produced the :: mutant strain and resulted in the complete loss of daunorubicin biosynthesis. Suppression of the :: mutation by the introduction of or on a plasmid suggested that DnrO is required for the transcription of , whose product is known to be required for expression. These conclusions were supported by the effects of the mutation on expression of , and , as viewed by fusions to each of these regulatory genes. DnrO was overexpressed in and the cell-free extract was used to conduct mobility shift DNA-binding assays. The results showed that DnrO binds specifically to the overlapping / promoter region. Thus, may regulate the expression of both the and genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1457
2000-06-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461457a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1457&mimeType=html&fmt=ahah

References

  1. Aceti D. J., Champness W. C. 1998; Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J Bacteriol 180:3100–3106
    [Google Scholar]
  2. Bibb M. J., White J., Ward J. M., Janssen G. R. 1994; The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14:533–545 [CrossRef]
    [Google Scholar]
  3. von Bodman S., Hayman G. T., Farrand S. K. 1992; Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc Natl Acad Sci USA 89:643–647 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Buoncristiani M. R., Howard P. K., Otsuda A. J. 1986; DNA-binding and enzymatic domains of the bifunctional biotin operon repressor (BirA) of Escherichia coli. Gene 44:255–261 [CrossRef]
    [Google Scholar]
  6. Burotowski S., Chodosh L. A. 1996; Mobility shift DNA-binding assay using gel electrophoresis. In Current Protocols in Molecular Biology pp. 12.2.1–12.2.11Edited by Ausubel F. M. New York: Wiley;
    [Google Scholar]
  7. Chater K. F. 1993; Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713 [CrossRef]
    [Google Scholar]
  8. Chater K. F., Bibb M. J. 1997; Regulation of bacterial antibiotic production. In Biotechnology pp. 59–105Edited by Kleinkauf H., von Döhren H. Weinheim: VCH;
    [Google Scholar]
  9. Dekleva M. L., Titus J. A., Strohl W. R. 1985; Nutrient effects on anthracycline production by Streptomyces peucetius in a defined medium. Can J Microbiol 31:287–294 [CrossRef]
    [Google Scholar]
  10. Della-Cioppa G., Garger S. J., Sverlow G. G., Turpen T. H., Grill L. K. 1990; Melanin production in Escherichia coli from a cloned tyrosinase gene. Biotechnology 8:634–638 [CrossRef]
    [Google Scholar]
  11. Fernandez-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F. 1991; The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces coelicolor. Cell 66:769–780 [CrossRef]
    [Google Scholar]
  12. Fisher S. H., Wray L. V. Jr 1989; Regulation of glutamine synthetase in Streptomyces coelicolor. J Bacteriol 171:2378–2383
    [Google Scholar]
  13. Floriano B., Bibb M. J. 1996; afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385–396 [CrossRef]
    [Google Scholar]
  14. Furuya K., Hutchinson C. R. 1996; The DnrN protein of Streptomyces peucetius, a pseudo-response regulator, is a DNA-binding protein involved in the regulation of daunorubicin biosynthesis. J Bacteriol 178:6310–6318
    [Google Scholar]
  15. Furuya K., Hutchinson C. R. 1998; The DrrC protein of Streptomyces peucetius, a UvrA-like protein, is a DNA-binding protein whose gene is induced by daunorubicin. FEMS Microbiol Lett 168:243–249 [CrossRef]
    [Google Scholar]
  16. Gross R., Arico B., Rappuoli R. 1989; Families of bacterial signal-transducing proteins. Mol Microbiol 3:1661–1667 [CrossRef]
    [Google Scholar]
  17. Guilfoile P. G., Hutchinson C. R. 1991; A bacterial analog of the mdr gene of mammalian tumour cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci USA 88:8553–8557 [CrossRef]
    [Google Scholar]
  18. Guilfoile P. G., Hutchinson C. R. 1992; Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J Bacteriol 174:3651–3658
    [Google Scholar]
  19. Guthrie E. P., Flaxman C. S., White J., Hodgson D. A., Bibb M. J., Chater K. F. 1998; A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology 144:727–738 [CrossRef]
    [Google Scholar]
  20. Hintermann G., Zatchej M., Hütter R. 1985; Cloning and expression of the genetically unstable tyrosinase structural gene from Streptomyces glaucescens. Mol Gen Genet 200:422–432 [CrossRef]
    [Google Scholar]
  21. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  22. Horinouchi S., Kito M., Nishiyama M., Furuya K., Hong S. K., Miyake K., Beppu T. 1990; Primary structure of AfsR, a global regulatory protein for secondary metabolism formation in Streptomyces coelicolor A3(2). Gene 95:49–56 [CrossRef]
    [Google Scholar]
  23. Huber M., Hintermann G., Lerch K. 1985; Primary structure of tyrosinase from Streptomyces glaucescens. Biochemistry 24:6038–6044 [CrossRef]
    [Google Scholar]
  24. Jendrisak J. J., Burgess R. R. 1975; A new method for the large-scale purification of wheat germ DNA-dependent RNA polymerase II. Biochemistry 14:4639–4644 [CrossRef]
    [Google Scholar]
  25. Klein J. R., Heinrich B., Plapp R. 1991; Molecular analysis and nucleotide sequence of the envCD operon of Escherichia coli. Mol Gen Genet 230:230–240 [CrossRef]
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  27. Lawlor E. J., Baylis H. A., Chater K. F. 1987; Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 1:1305–1310 [CrossRef]
    [Google Scholar]
  28. Lomovskaya N., Otten S., Doi-Katayama Y.8 other authors 1999; Doxorubicin overproduction in Streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA CYP450 hydroxylase gene. J Bacteriol 181:305–318
    [Google Scholar]
  29. Madduri K., Hutchinson C. R. 1995; Functional and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177:1208–1215
    [Google Scholar]
  30. Nagy I., Geert S., Jos V., De Mot R. 1997; Further sequence analysis of the DNA regions with the Rhodococcus 20S proteasome structural genes reveals extensive homology with Mycobacterium leprae. DNA Seq 7:225–228
    [Google Scholar]
  31. Narva K. E., Feitelson J. S. 1990; Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol 172:326–333
    [Google Scholar]
  32. Neal R. J., Chater K. F. 1987; Nucleotide sequence analysis reveals similarities between proteins determining methylenomycin A resistance in Streptomyces and tetracycline resistance in eubacteria. Gene 58:229–241 [CrossRef]
    [Google Scholar]
  33. Otten S. L., Stutzman-Engwall K. J., Hutchinson C. R. 1990; Cloning and expression of daunorubicin biosynthesis genes from Streptomyces peucetius and S. peucetius subsp. caesius. J Bacteriol 172:3427–3434
    [Google Scholar]
  34. Otten S. L., Ferguson J., Hutchinson C. R. 1995; Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol 177:1216–1224
    [Google Scholar]
  35. Otten S. L., Gallo M. A., Madduri K., Liu X., Hutchinson C. R. 1997; Cloning and characterization of the Streptomyces peucetius dnmZUV genes encoding three enzymes required for biosynthesis of the daunorubicin precursor thymidine diphospho-l-daunosamine. J Bacteriol 179:4446–4450
    [Google Scholar]
  36. Paget M. S. B., Hintermann G., Smith C. P. 1994; Construction and application of streptomycete promoter probe vectors which employ the Streptomyces glaucescens tyrosinase-encoding gene as reporter. Gene 146:105–110 [CrossRef]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Scholtmeier K., Hillen W. 1984; Transposon Tn10 contains structural genes with opposite polarity between tetA and IS10r. J Bacteriol 160:499–503
    [Google Scholar]
  39. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974 [CrossRef]
    [Google Scholar]
  40. Stutzman-Engwall K. J., Hutchinson C. R. 1989; Multigene families for anthracycline antibiotic production in Streptomyces peucetius. Proc Natl Acad Sci USA 86:3135–3139 [CrossRef]
    [Google Scholar]
  41. Stutzman-Engwall K. J., Otten S. L., Hutchinson C. R. 1992; Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol 174:144–154
    [Google Scholar]
  42. Tang L., Grimm A., Zhang Y.-X., Hutchinson C. R. 1996; Purification and characterization of the DNA-binding protein DnrI, a transcriptional factor of daunorubicin biosynthesis in Streptomyces peucetius. Mol Microbiol 22:801–813 [CrossRef]
    [Google Scholar]
  43. Vara J. A., Lewandowska-Skarbek M., Wang Y.-G., Donadio S., Hutchinson C. R. 1989; Cloning of genes governing the deoxysugar portion of the erythromycin biosynthetic pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol 171:5872–5881
    [Google Scholar]
  44. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. 1986; Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203:468–478 [CrossRef]
    [Google Scholar]
  45. White J., Bibb M. J. 1997; The bldA-dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol 179:627–633
    [Google Scholar]
  46. Wietzorrek A., Bibb M. J. 1997; A novel family of proteins that regulate antibiotic productin in streptomycetes appears to contain a OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184 [CrossRef]
    [Google Scholar]
  47. Yang K., Han L., Vining L. C. 1995; Regulation of jadomycin B production in Streptomyces venezuelae ISP5230: involvement of a repressor gene, jadR2. J Bacteriol 177:6111–6117
    [Google Scholar]
/content/journal/micro/10.1099/00221287-146-6-1457
Loading
/content/journal/micro/10.1099/00221287-146-6-1457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error