1887

Abstract

Pediocin PA-1, which is a bacteriocin produced by lactic acid bacteria, has potential as a biopreservative of food. However, such use may lead to the development of resistance in the target organism. Gene expression in two independent pediocin-resistant mutants of 412 was compared to the original isolate by restriction fragment differential display PCR (RFDD-PCR). This method amplifies cDNA restriction fragments under stringent PCR conditions, enabled by the use of specific primers complementary to ligated adaptor sequences. RFDD-PCR was very well suited for analysis of listerial gene expression, giving reproducible PCR product profiles. Three gene fragments having increased expression in both resistant mutants were identified. All three had homology to components of β-glucoside-specific phosphoenolpyruvate-dependent phosphotransferase systems (PTS), one fragment having homology to enzyme II permeases, and the two others to phospho-β-glucosidases. Overexpression of the putative PTS system was consistently observed in 10 additional pediocin-resistant mutants, isolated at different pH, salt content and temperature. The results suggest that RFDD-PCR is a strong approach for the analysis of prokaryotic gene expression and that the putative β-glucoside-specific PTS system is involved in mediating pediocin resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1381
2000-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461381a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1381&mimeType=html&fmt=ahah

References

  1. Abu K. Y., Pederson L. L. 1996; The use of differential display-PCR to isolate and characterize a Legionella pneumophila locus induced during the intracellular infection of macrophages. Mol Microbiol 21:543–556 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Arnau J., Sørensen K. I. 1997; The isolation of novel heat shock genes in Lactococcus lactis using RNA subtractive hybridization. Gene 188:229–234 [CrossRef]
    [Google Scholar]
  4. Bachem C. W., van der Hoeven R. S., de Bruijn S. M., Vreugdenhil D., Zabeau M., Visser R. G. 1996; Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753 [CrossRef]
    [Google Scholar]
  5. Brehm K., Ripio M. T., Kreft J., Vazquez-Boland J. A. 1999; The bvr locus of Listeria monocytogenes mediates virulence gene repression by beta-glucosides. J Bacteriol 181:5024–5032
    [Google Scholar]
  6. Brötz H., Josten M., Wiedemann I., Schneider U., Götz F., Bierbaum G., Sahl H. G. 1998; Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327 [CrossRef]
    [Google Scholar]
  7. Brown G. D., Thomson J. A. 1998; Isolation and characterisation of an aryl-beta-D-glucoside uptake and utilisation system (abg) from the gram-positive ruminal Clostridium species C. longisporum. Mol Gen Genet 257:213–218 [CrossRef]
    [Google Scholar]
  8. Chen Y., Shapira R., Eisenstein M., Montville T. J. 1997; Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl Environ Microbiol 63:524–531
    [Google Scholar]
  9. Chikindas M. L., Garcia-Garcera M. J., Driessen A. J., Ledeboer A. M., Nissen-Meyer J., Nes I. F., Abee T., Konings W. N., Venema G. 1993; Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59:3577–3584
    [Google Scholar]
  10. Christensen D. P., Hutkins R. W. 1994; Glucose uptake by Listeria monocytogenes Scott A and inhibition by pediocin JD. Appl Environ Microbiol 60:3870–3873
    [Google Scholar]
  11. Crandall A. D., Montville T. J. 1998; Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 64:231–237
    [Google Scholar]
  12. Davies E. A., Falahee M. B., Adams M. R. 1996; Involvement of the cell envelope of Listeria monocytogenes in the acquisition of nisin resistance. J Appl Bacteriol 81:139–146 [CrossRef]
    [Google Scholar]
  13. Debouck C. 1995; Differential display or differential dismay. Curr Opin Biotechnol 6:597–599 [CrossRef]
    [Google Scholar]
  14. Ennahar S., Sonomoto K., Ishizaki A. 1999; Class IIa bacteriocins from lactic acid bacteria: antibacterial activity and food preservation. J Biosci Bioeng 87:705–716 [CrossRef]
    [Google Scholar]
  15. Fislage R., Berceanu M., Humboldt Y., Wendt M., Oberender H. 1997; Primer design for a prokaryotic differential display RT-PCR. Nucleic Acids Res 25:1830–1835 [CrossRef]
    [Google Scholar]
  16. Fleming J. T., Yao W. H., Sayler G. S. 1998; Optimization of differential display of prokaryotic mRNA: application to pure culture and soil microcosms. Appl Environ Microbiol 64:3698–3706
    [Google Scholar]
  17. Goulhen F., Hafezi A., Uitto V. J., Hinode D., Nakamura R., Grenier D., Mayrand D. 1998; Subcellular localization and cytotoxic activity of the GroEL-like protein isolated from Actinobacillus actinomycetemcomitans. Infect Immun 66:5307–5313
    [Google Scholar]
  18. Handfield M., Levesque R. C. 1999; Strategies for isolation of in vivo expressed genes from bacteria. FEMS Microbiol Rev 23:69–91 [CrossRef]
    [Google Scholar]
  19. Kullen M. J., Klaenhammer T. R. 1999; Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol 33:1152–1161
    [Google Scholar]
  20. Kustu S., Santero E., Keener J., Popham D., Weiss D. 1989; Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev 53:367–376
    [Google Scholar]
  21. Lengeler J. W., Jahreis K., Wehmeier U. F. 1994; Enzymes II of the phospho enol pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta 1188:1–28 [CrossRef]
    [Google Scholar]
  22. Liang P., Pardee A. B. 1992; Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971 [CrossRef]
    [Google Scholar]
  23. Maisnier-Patin S., Richard J. 1996; Cell wall changes in nisin-resistant variants of Listeria innocua grown in the presence of high nisin concentrations. FEMS Microbiol Lett 140:29–35 [CrossRef]
    [Google Scholar]
  24. Mazzotta A. S., Montville T. J. 1997; Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10 degrees C and 30 degrees C. J Appl Microbiol 82:32–38 [CrossRef]
    [Google Scholar]
  25. Milenbachs A. A., Brown D. P., Moors M., Youngman P. 1997; Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol Microbiol 23:1075–1085 [CrossRef]
    [Google Scholar]
  26. Ming X., Daeschel M. A. 1995; Correlation of cellular phospholipid content with nisin resistance of Listeria monocytogenes Scott A. J Food Prot 58:416–420
    [Google Scholar]
  27. Mitchell W. J., Reizer J., Herring C., Hoischen C., Saier M. H. Jr 1993; Identification of a phosphoenolpyruvate:fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes. J Bacteriol 175:2758–2761
    [Google Scholar]
  28. Montville T. J., Chen Y. 1998; Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl Microbiol Biotechnol 50:511–519 [CrossRef]
    [Google Scholar]
  29. Neidhardt F. C., Ingraham J. L., Schaechter M. 1990 Physiology of the Bacterial Cell: a Molecular Approach Sunderland, MA: Sinaur Associates, Inc;
    [Google Scholar]
  30. Nissen-Meyer J., Nes I. F. 1997; Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol 167:67–77 [CrossRef]
    [Google Scholar]
  31. Park S. F. 1994; The repression of listeriolysin O expression in Listeria monocytogenes by the phenolic beta-D-glucoside, arbutin. Lett Appl Microbiol 19:258–260 [CrossRef]
    [Google Scholar]
  32. Park S. F., Kroll R. G. 1993; Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol Microbiol 8:653–661 [CrossRef]
    [Google Scholar]
  33. Parker C., Hutkins R. W. 1997; Listeria monocytogenes Scott A transports glucose by high-affinity and low-affinity glucose transport systems. Appl Environ Microbiol 63:543–546
    [Google Scholar]
  34. Pellé R., Murphy N. B. 1993; Northern hybridization: rapid and simple electrophoretic conditions. Nucleic Acids Res 21:2783–2784 [CrossRef]
    [Google Scholar]
  35. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  36. Rasch M., Knøchel S. 1998; Variations in tolerance of Listeria monocytogenes to nisin, pediocin PA-1 and bavaricin A. Lett Appl Microbiol 27:275–278 [CrossRef]
    [Google Scholar]
  37. Robichon D., Gouin E., Debarbouille M., Cossart P., Cenatiempo Y., Hechard Y. 1997; The rpoN (sigma54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J Bacteriol 179:7591–7594
    [Google Scholar]
  38. Rutberg B. 1997; Antitermination of transcription of catabolic operons. Mol Microbiol 23:413–421 [CrossRef]
    [Google Scholar]
  39. Sahl H. G., Bierbaum G. 1998; Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol 52:41–79 [CrossRef]
    [Google Scholar]
  40. Schnetz K., Sutrina S. L., Saier M. H. Jr, Rak B. 1990; Identification of catalytic residues in the beta-glucoside permease of Escherichia coli by site-specific mutagenesis and demonstration of interdomain cross-reactivity between the beta-glucoside and glucose systems. J Biol Chem 265:13464–13471
    [Google Scholar]
  41. Shepard B. D., Gilmore M. S. 1999; Identification of aerobically and anaerobically induced genes in Enterococcus faecalis by random arbitrarily primed PCR. Appl Environ Microbiol 65:1470–1476
    [Google Scholar]
  42. Shimkets R. A., Lowe D. G., Tai J. T.17 other authors 1999; Gene expression analysis by transcript profiling coupled to a gene database query. Nat Biotechnol 17:798–803 [CrossRef]
    [Google Scholar]
  43. Stülke J., Arnaud M., Rapoport G., Martin-Verstraete I. 1998; PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28:865–874 [CrossRef]
    [Google Scholar]
  44. Verheul A., Russell N. J., Van’T H. R., Rombouts F. M., Abee T. 1997; Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Appl Environ Microbiol 63:3451–3457
    [Google Scholar]
  45. Waite B. L., Hutkins R. W. 1998; Bacteriocins inhibit glucose PEP:PTS activity in Listeria monocytogenes by induced efflux of intracellular metabolites. J Appl Microbiol 85:287–292 [CrossRef]
    [Google Scholar]
  46. Waite B. L., Siragusa G. R., Hutkins R. W. 1998; Bacteriocin inhibition of two glucose transport systems in Listeria monocytogenes. J Appl Microbiol 84:715–721 [CrossRef]
    [Google Scholar]
  47. Zhang J. S., Duncan E. L., Chang A. C., Reddel R. R. 1998; Differential display of mRNA. Mol Biotechnol 10:155–165 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-6-1381
Loading
/content/journal/micro/10.1099/00221287-146-6-1381
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error