1887

Abstract

The present study characterizes gliding motility mutants of which were obtained by UV irradiation. They were identified by their abnormal colony shapes in 01% agar medium, showing a reduced number of satellite colonies compared to the wild-type. A total of ten mutants were isolated based on their colony phenotype. Using dark-field and electron microscopy, two classes of mutants, group I and group II, were defined. Cells of group I mutants had irregular, flexible and sometimes elongated head-like structures and showed a tendency to aggregate. Neither binding to glass nor gliding motility was observed in these mutants. Cells of group II mutants were rather spherical in shape, with the long axis reduced to 80% and the short axis enlarged to 120% of that of wild-type cells, respectively. Their gliding speed was 20% faster than that of wild-type cells. Three of the ten mutants remained unclassified. Mutant m6 had a reduced binding activity to glass and a reduced gliding motility with 50% of the speed of the wild-type strain. The ability of wild-type and mutant colonies to adsorb erythrocytes was found to correlate with the binding activity required for gliding, indicating that mycoplasma gliding depends on cytadherence-associated components. Finally, the ability to form microcolonies on surfaces was shown to correlate with the gliding activity, suggesting a certain role of gliding motility in the parasitic life-cycle of mycoplasmas.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1311
2000-06-01
2020-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461311a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1311&mimeType=html&fmt=ahah

References

  1. Aluotto B. B., Wittler R. G., Williams C. O., Faber J. E.. 1970; Standardized bacteriologic techniques for the characterization of mycoplasma species. Int J Syst Bacteriol20:35–58[CrossRef]
    [Google Scholar]
  2. Athamna A., Rosengarten R., Levisohn S., Kahane I., Yogev D.. 1997; Adherence of Mycoplasma gallisepticum involves variable surface membrane proteins. Infect Immun65:2468–2471
    [Google Scholar]
  3. Bautsch W.. 1988; Rapid physical mapping of the Mycoplasma mobile genome by two-dimensional field inversion gel electrophoresis techniques. Nucleic Acids Res16:11461–11467[CrossRef]
    [Google Scholar]
  4. Blattner F. R., Plunkett G. III, Bloch C. A..14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1474[CrossRef]
    [Google Scholar]
  5. Bredt W.. 1979; Motility. In The Mycoplasmas pp.141–145Edited by Barile M. F., Razin S., Tully J. G., Whitcomb R. F.. New York: Academic Press;
    [Google Scholar]
  6. Burchard R. B.. 1981; Gliding motility of prokaryotes: ultrastructure, physiology, and genetics. Annu Rev Microbiol35:497–529[CrossRef]
    [Google Scholar]
  7. Citti C., Rosengarten R.. 1997; Mycoplasma genetic variation and its implication for pathogenesis. Wien Klin Wochenschr109:562–568
    [Google Scholar]
  8. Cohen A. J., Williamson D. L., Brink P. R.. 1989; A motility mutant of Spiroplasma melliferium induced with nitrous acid. Curr Microbiol18:219–222[CrossRef]
    [Google Scholar]
  9. Cole R. M.. 1983; Transmission electron microscopy: basic techniques. Methods Mycoplasmol1:43–50
    [Google Scholar]
  10. Fareed G. C., Kasamatsu H.. 1980; Electron microscopic methods for localizing the origin and termination points for DNA replication. In Nucleic Acids Part I pp.709–717Edited by Grossman L., Moldave K.. New York: Academic Press;
    [Google Scholar]
  11. Fraser C. M., Gocayne J. D., White O..26 other authors 1995; The minimal gene complement of Mycoplasma genitalium. Science270:397–403[CrossRef]
    [Google Scholar]
  12. Freundt E. A.. 1983; Film and spot production. Methods Mycoplasmol1:373–374
    [Google Scholar]
  13. Hahn T. W., Willby M. J., Krause D. C.. 1998; HMW1 is required for cytadhesin P1 trafficking to the attachment organelle in Mycoplasma pneumoniae. J Bacteriol180:1270–1276
    [Google Scholar]
  14. Hartzell P. L., Youderian P.. 1995; Genetics of gliding motility and development in Myxococcus xanthus. Arch Microbiol164:309–323[CrossRef]
    [Google Scholar]
  15. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B.-C., Herrmann R.. 1996; Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res24:4420–4449[CrossRef]
    [Google Scholar]
  16. Hoiczyk E., Baumeister W.. 1998; The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr Biol8:1161–1168[CrossRef]
    [Google Scholar]
  17. Jacob C., Nouzieres F., Duret S., Bove J. M., Renaudin J.. 1997; Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri. J Bacteriol179:4802–4810
    [Google Scholar]
  18. Jacques M.. 1996; Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol4:408–409[CrossRef]
    [Google Scholar]
  19. Kirchhoff H.. 1992; Motility. In Mycoplasmas – Molecular Biology and Pathogenesis pp.289–306Edited by Maniloff J., McElhaney R. N., Finch L. R., Baseman J. B.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Kirchhoff H., Rosengarten R.. 1984; Isolation of a motile mycoplasma from fish. J Gen Microbiol130:2439–2445
    [Google Scholar]
  21. Kirchhoff H., Beyene P., Fischer M..7 other authors 1987a; Mycoplasma mobile sp. nov., a new species from fish. Int J Syst Bacteriol37:192–197[CrossRef]
    [Google Scholar]
  22. Kirchhoff H., Boldt U., Rosengarten R., Klein-Struckmeier A.. 1987b; Chemotactic response of a gliding mycoplasma. Curr Microbiol15:57–60[CrossRef]
    [Google Scholar]
  23. Korolev E. V., Nikonov A. V., Brudnaya M. S., Snigirevskaya E. S., Sabinin G. V., Komissarchik Y. Y., Ivanov P. I., Borchsenius S. N.. 1994; Tubular structures of Mycoplasma gallisepticum and their possible participation in cell motility. Microbiology140:671–681[CrossRef]
    [Google Scholar]
  24. Krause D. C.. 1996; Mycoplasma pneumoniae cytadherence: unravelling the tie that binds. Mol Microbiol20:247–253[CrossRef]
    [Google Scholar]
  25. Krause D. C.. 1998; Mycoplasma pneumoniae cytadherence: organization and assembly of the attachment organelle. Trends Microbiol6:15–18[CrossRef]
    [Google Scholar]
  26. Krause D. C., Proft T., Hedreyda C. T., Hilbert H., Plagens H., Herrmann R.. 1997; Transposon mutagenesis reinforces the correlation between Mycoplasma pneumoniae cytoskeletal protein HMW2 and cytadherence. J Bacteriol179:2668–2677
    [Google Scholar]
  27. Manson M. D., Armitage J. P., Hoch J. A., Macnab R. M.. 1998; Bacterial locomotion and signal transduction. J Bacteriol180:1009–1022
    [Google Scholar]
  28. Meng K. E., Pfister R. M.. 1980; Intracellular structures of Mycoplasma pneumoniae revealed after membrane removal. J Bacteriol144:390–399
    [Google Scholar]
  29. Miyata M., Seto S.. 1999; Cell reproduction cycle of mycoplasma. Biochimie81:873–878[CrossRef]
    [Google Scholar]
  30. Morowitz H. J., Maniloff J.. 1966; Analysis of the life cycle of Mycoplasma gallisepticum. J Bacteriol91:1638–1644
    [Google Scholar]
  31. O’Toole G. A., Kolter R.. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304[CrossRef]
    [Google Scholar]
  32. Razin S.. 1995; Molecular properties of mollicutes: a synopsis. In Molecular and Diagnostic Procedures in Mycoplasmology pp.1–25Edited by Razin S., Tully J. G.. Tokyo: Academic Press;
    [Google Scholar]
  33. Rosengarten R., Kirchhoff H.. 1987; Gliding motility of Mycoplasma sp. nov. strain 163K. J Bacteriol169:1891–1898
    [Google Scholar]
  34. Rosengarten R., Kirchhoff H.. 1989; Growth morphology of Mycoplasma mobile 163K on solid surfaces: reproduction, aggregation, and microcolony formation. Curr Microbiol18:15–22[CrossRef]
    [Google Scholar]
  35. Rosengarten R., Kirchhoff H., Kerlen G., Seack K.-H.. 1988; The surface layer of Mycoplasma mobile 163K and its possible relevance to cell cohesion and group motility. J Gen Microbiol134:275–281
    [Google Scholar]
  36. Seto S., Miyata M.. 1998; Cell reproduction and morphological changes in Mycoplasma capricolum. J Bacteriol180:256–264
    [Google Scholar]
  37. Seto S., Miyata M.. 1999; Partitioning, movement, and positioning of nucleoids in Mycoplasma capricolum. J Bacteriol181:6073–6080
    [Google Scholar]
  38. Smith P. F., Langworthy T. A.. 1983; Characterization of membrane lipoglycans. In. Methods Mycoplasmol1:277–283
    [Google Scholar]
  39. Sobeslavsky O., Prescott B., Chanock R. M.. 1968; Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence. J Bacteriol96:695–705
    [Google Scholar]
  40. Wall D., Kaiser D.. 1999; Type IV pili and cell motility. Mol Microbiol32:1–10[CrossRef]
    [Google Scholar]
  41. Weisburg W. G., Tully J. G., Rose D. L..9 other authors 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol171:6455–6467
    [Google Scholar]
  42. Youderian P.. 1998; Bacterial motility: secretory secrets of gliding bacteria. Curr Biol8:R408–R411[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-6-1311
Loading
/content/journal/micro/10.1099/00221287-146-6-1311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error