1887

Abstract

Slot-blot hybridization of rRNA with domain-specific oligonucleotide probes targeting the 16S rRNA of and was utilized to assess the relative abundance of these domains along a thermal gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). The highest prokaryotic rRNA concentrations (defined as the sum of bacterial and archaeal rRNA) were found in the uppermost sediment surface (0–20 mm), decreasing strongly with depth. This indicates that the microbial activity was mainly occurring in the surface layer of this hydrothermal vent. Furthermore, rRNA concentrations were higher in regions closer to the vent, suggesting that the hydrothermal activity stimulated microbial activity. seemed to be a minor component of the microbial community at this vent site, even in the zones with higher temperatures. made up at least 78% (mean 95%) of the prokaryotic rRNA. However, along the steepest temperature gradient, the proportion of archaeal rRNA increased. Nevertheless, even in the hottest sediment layer where a quantification was possible ( temperature 82 °C) archaeal rRNA made up only 119% of the prokaryotic rRNA. This suggests that were generally of minor importance at this vent site and were probably restricted to a narrow niche. The factors that allow to dominate in a high temperature environment that was once believed to be the realm of remain elusive.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1287
2000-06-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461287a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1287&mimeType=html&fmt=ahah

References

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A.. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol56:1919–1925
    [Google Scholar]
  2. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R.. 1994; Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA91:1609–1613[CrossRef]
    [Google Scholar]
  3. Barns S. R., Delwiche C. F., Palmer J. D., Pace N. R.. 1996; Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA93:9188–9193[CrossRef]
    [Google Scholar]
  4. Baross J. A., Deming J. W.. 1995; Growth at high temperatures: isolation and taxonomy, physiology, and ecology. In The Microbiology of Deep-Sea Hydrothermal Vents pp.169–217Edited by Karl D. M.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  5. Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M.. 1999; The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol22:434–444[CrossRef]
    [Google Scholar]
  6. Dando P. R., Thomm M., Arab H..7 other authors 1998; Microbiology of shallow hydrothermal sites off Palaeochori Bay, Milos (Hellenic Volcanic Arc). Cah Biol Mar39:369–372
    [Google Scholar]
  7. Devereux R., Hines M. E., Stahl D. A.. 1996; S-cycling: characterization of natural communities of sulfate-reducing bacteria by 16S rRNA sequence comparisons. Microb Ecol32:283–292
    [Google Scholar]
  8. Guezennec J., Dussauze J., Bian M., Rocchiccioli F., Ringelberg D., Hedrick D. B., White D. C.. 1996; Bacterial community structure in sediments from Guyamas basin, Gulf of California, as determined by analysis of phospholipid ester-linked fatty acids. J Mar Biotechnol4:165–175
    [Google Scholar]
  9. Harmsen H. J. M., Prieur D., Jeanthon C.. 1997a; Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl Environ Microbiol63:2876–2883
    [Google Scholar]
  10. Harmsen H. J. M., Prieur D., Jeanthon C.. 1997b; Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol63:4061–4068
    [Google Scholar]
  11. Hedrick D. B., Pledger R. D., White D. C., Baross J. A.. 1992; In situ microbial ecology of hydrothermal vent sediments. FEMS Microbiol Ecol101:1–10
    [Google Scholar]
  12. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R.. 1998; Novel division level bacteria diversity in a Yellowstone hot spring. J Bacteriol180:366–376
    [Google Scholar]
  13. Jannasch H. W.. 1995; Microbial interactions with hydrothermal fluids. Geophys Monogr91:273–296
    [Google Scholar]
  14. Jochimsen B., Peinemann-Simon S., Völker H., Stüben D., Botz R., Stoffers P., Dando P. R., Thomm M.. 1997; Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarcheote isolated from Milos, Greece. Extremophiles1:67–73[CrossRef]
    [Google Scholar]
  15. Kemp P. F., Lee S., LaRoche J.. 1993; Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol59:2594–2601
    [Google Scholar]
  16. L’Haridon S., Cilia V., Messner P., Raguénès G., Gambacorta A., Sleytr U. B., Prieur D., Jeanthon C.. 1998; Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulfur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol48:701–711[CrossRef]
    [Google Scholar]
  17. MacGregor B. J., Moser D. P., Alm E. W., Nealson K. H., Stahl D. A.. 1997; Crenarcheaota in Lake Michigan sediment. Appl Environ Microbiol63:1178–1181
    [Google Scholar]
  18. Massana R., Taylor L. T., Murray A. E., Wu K. Y., Jeffrey W. H., DeLong E. F.. 1998; Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnol Oceanogr43:607–617[CrossRef]
    [Google Scholar]
  19. Raskin L., Poulsen L. K., Noguera D. R., Rittmann B. E., Stahl D. A.. 1994; Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol60:1241–1248
    [Google Scholar]
  20. Reysenbach A.-L., Wickham G. S., Pace N. R.. 1994; Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus spring, Yellowstone National Park. Appl Environ Microbiol60:2113–2119
    [Google Scholar]
  21. Sahm K., Berninger U.. 1998; Abundance, vertical distribution, and community structure of benthic prokaryotes from permanently cold marine sediments (Svalbard, Arctic Ocean). Mar Ecol Prog Ser165:71–80[CrossRef]
    [Google Scholar]
  22. Sahm K., MacGregor B. J., Jørgensen B. B., Stahl D. A.. 1999; Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ Microbiol1:65–74[CrossRef]
    [Google Scholar]
  23. Sievert S. M., Brinkhoff T., Muyzer G., Ziebis W., Kuever J.. 1999; Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol65:3834–3842
    [Google Scholar]
  24. Stahl D. A., Amann R. I.. 1991; Development and application of nucleic acid probes in bacterial systematics. In Nucleic Acid Techniques in Bacterial Systematics pp.205–248Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  25. Stahl D. A., Fleshner B., Mansfield H. R., Montgomery L.. 1988; Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol54:1079–1084
    [Google Scholar]
  26. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A.. 1990; Hyperthermophilic microorganisms. FEMS Microbiol Rev75:117–124[CrossRef]
    [Google Scholar]
  27. Takai K., Sako Y.. 1999; A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol28:177–188[CrossRef]
    [Google Scholar]
  28. Vetriani C., Jannasch H. W., MacGregor B. J., Stahl D. A., Reysenbach A.-L.. 1999; Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol65:4375–4384
    [Google Scholar]
  29. Woese C. R., Kandler O., Wheelis M. L.. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA87:4576–4579[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-6-1287
Loading
/content/journal/micro/10.1099/00221287-146-6-1287
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error