1887

Abstract

Potassium cyanide at submillimolar concentrations (20–500 μM) inhibited the high respiration rates of aerobic cultures of but, remarkably, stimulated culture growth. In batch culture, after an extended lag phase, exponential growth persisted longer, resulting in higher biomass densities. In aerobic chemostat cultures, elevated biomass concentration was observed in the presence of cyanide. This growth stimulation effect is attributed to decreased production of the inhibitory metabolite acetaldehyde at lowered respiration rates, when more reducing equivalents are channelled to alcohol dehydrogenase. Growth in the presence of cyanide did not alter the membrane cytochrome content. In non-growing cyanide-preincubated cells, with ethanol as the respiratory substrate, cyanide increased ATP levels; in such cells, a large part of the cyanide-sensitive respiration was inhibited within a few seconds after ethanol addition, while inhibition of the rest of respiration took several minutes. The more cyanide-sensitive respiration was apparently energy-nongenerating, and was absent in membrane preparations. Pelleting of membranes from cell-free extracts produced ‘soluble’ fractions in which a type haem was detectable by reduced oxidized difference spectroscopy. The function of the respiratory chain in cell growth and respiratory protection, and the possible physiological role of aerobic generation of inhibitory metabolites, are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1259
2000-06-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461259a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1259&mimeType=html&fmt=ahah

References

  1. Ashcroft J. R., Haddock B. A. 1975; Synthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of potassium cyanide. Biochem J 148:349–352
    [Google Scholar]
  2. Belaich J. P., Senez J. C. 1965; Influence of aeration and pantothenate on growth yields of Zymomonas mobilis. J Bacteriol 89:1195–1200
    [Google Scholar]
  3. Bringer S., Finn R. K., Sahm H. 1984; Effect of oxygen on the metabolism of Zymomonas mobilis. Arch Microbiol 139:376–381 [CrossRef]
    [Google Scholar]
  4. Bringer-Meyer S., Sahm H. 1988; Acetoin and phenylacetylcarbinol formation by the pyruvate decarboxylases of Zymomonas mobilis and Saccharomyces carlsbergensis. Biocatalysis 1:321–331 [CrossRef]
    [Google Scholar]
  5. Bringer-Meyer S., Sahm H. 1989; Junctions of catabolic and anabolic pathways in Zymomonas mobilis: phosphoenolpyruvate carboxylase and malic enzyme. Appl Microbiol Biotechnol 31:529–536
    [Google Scholar]
  6. Eaves D. J., Grove J., Staudenmann W., James P., Poole R. K., White S. A., Griffiths I., Cole J. A. 1998; Involvement of products of the nrfEFG genes in the covalent attachment of haem c to a novel cysteine-lysine motif in the cytochrome c 552 nitrite reductase from Escherichia coli. Mol Microbiol 28:205–216
    [Google Scholar]
  7. Haffie T. L., Louie P. W., Khachaturians G. G. 1985; Isolation of non-inhibitory strains of Zymomonas mobilis. Appl Environ Microbiol 49:1007–1009
    [Google Scholar]
  8. Hertzberg E. L, Hinkle P. C. 1974; Oxidative phosphorylation and proton translocation in membrane vesicles prepared from Escherichia coli. Biochem Biophys Res Commun 58:178–184 [CrossRef]
    [Google Scholar]
  9. Ioannidis N., Cooper C. E., Poole R. K. 1992; Spectroscopic studies on an oxygen binding haemoglobin-like flavohaemoprotein from Escherichia coli. Biochem J 288:649–655
    [Google Scholar]
  10. Ishikawa H., Nobayashi H., Tanaka H. 1990; Mechanism of fermentation performance of Zymomonas mobilis under oxygen supply in batch culture. J Ferment Bioeng 70:34–40 [CrossRef]
    [Google Scholar]
  11. Jones C. W., Doelle H. W. 1991; Kinetic control of ethanol production by Zymomonas mobilis. Appl Microbiol Biotechnol 35:4–9
    [Google Scholar]
  12. Kalnenieks U., de Graaf A. A., Bringer-Meyer S., Sahm H. 1993; Oxidative phosphorylation in Zymomonas mobilis. Arch Microbiol 160:74–79 [CrossRef]
    [Google Scholar]
  13. Kalnenieks U., Galinina N., Irbe I., Toma M. 1995; Energy coupling sites in the electron transport chain of Zymomonas mobilis. FEMS Microbiol Lett 133:99–104 [CrossRef]
    [Google Scholar]
  14. Kalnenieks U., Galinina N., Toma M., Skards I. 1996; Electron transport chain in aerobically cultivated Zymomonas mobilis. FEMS Microbiol Lett 143:185–189 [CrossRef]
    [Google Scholar]
  15. Kalnenieks U., Galinina N., Bringer-Meyer S., Poole R. K. 1998; Membrane d-lactate oxidase in Zymomonas mobilis: evidence for a branched respiratory chain. FEMS Microbiol Lett 168:91–97
    [Google Scholar]
  16. Kelly M. J. S., Poole R. K., Yates M. G., Kennedy C. 1990; Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172:6010–6019
    [Google Scholar]
  17. Kim Y. J., Song K. B., Rhee S. K. 1995; A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis. J Bacteriol 177:5176–5178
    [Google Scholar]
  18. Kita K., Konishi K., Anraku Y. 1984; Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b 558 –d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J Biol Chem 259:3375–3381
    [Google Scholar]
  19. Knowles C. J. 1976; Microorganisms and cyanide. Bacteriol Rev 40:652–680
    [Google Scholar]
  20. Markwell M. A. K., Haas S. M., Bieber L. L., Talbert N. E. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210 [CrossRef]
    [Google Scholar]
  21. Pankova L. M., Shvinka Yu. E., Beker M. E., Slava E. E. 1985; Effect of aeration on Zymomonas mobilis metabolism. Mikrobiologiya 54:141–145
    [Google Scholar]
  22. Pankova L. M., Shvinka J. E., Beker M. J. 1988; Regulation of intracellular H+ balance in Zymomonas mobilis 113 during the shift from anaerobic to aerobic conditions. Appl Microbiol Biotechnol 28:583–588
    [Google Scholar]
  23. Pappas K.-M., Galani I., Typas M. A. 1997; Transposon mutagenesis and strain construction in Zymomonas mobilis. J Appl Microbiol 82:379–388 [CrossRef]
    [Google Scholar]
  24. Poole R. K . 2000; Aerobic respiration: oxidases and globins. In Encyclopaedia of Microbiology, 2nd edn. vol. 1 pp. 53–68Edited by Lederberg J.others San Diego: Academic Press;
    [Google Scholar]
  25. Poole R. K., Cook G. M. 2000; Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol43 (in press)
    [Google Scholar]
  26. Poole R. K., Haddock B. A. 1974; Energy-linked reduction of nicotinamide-adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12. Biochem J 144:77–85
    [Google Scholar]
  27. Søballe B., Poole R. K. 1998; Requirement for ubiquinone downstream of cytochrome(s) b in the oxygen-terminated respiratory chains of Escherichia coli K-12 revealed using a null mutant allele of ubiCA. Microbiology 144:361–373 [CrossRef]
    [Google Scholar]
  28. Stanley G. A., Hobley T. J., Pamment N. B. 1997; Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks. Biotechnol Bioeng 53:71–78 [CrossRef]
    [Google Scholar]
  29. Toh H., Doelle H. 1997; Changes in the growth and enzyme level of Zymomonas mobilis under oxygen-limited conditions at low glucose concentration. Arch Microbiol 168:46–52 [CrossRef]
    [Google Scholar]
  30. Viikari L. 1988; Carbohydrate metabolism in Zymomonas. Crit Rev Biotechnol 7:237–261 [CrossRef]
    [Google Scholar]
  31. Wecker M. S. A., Zall R. R. 1987; Production of acetaldehyde by Zymomonas mobilis. Appl Environ Microbiol 53:2815–2820
    [Google Scholar]
  32. Zikmanis P., Kruce R., Auzina L. 1997; An elevation of the molar growth yield of Zymomonas mobilis during aerobic exponential growth. Arch Microbiol 167:167–171 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-146-6-1259
Loading
/content/journal/micro/10.1099/00221287-146-6-1259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error