The FlgA protein, a putative periplasmic chaperone essential for flagellar P ring formation Free

Abstract

P ring is a periplasmic substructure of the flagellar basal body and is believed to connect with the peptidoglycan layer in . Two flagellar genes, and , are known to be indispensable for P ring formation. The gene encodes the component protein of the P ring. However, the role of the gene product in P ring assembly remained unknown. Here, evidence is presented that FlgA is synthesized as a precursor form and exported via the Sec secretory pathway into the periplasmic space where P ring formation takes place. Overproduction of the FlgI protein led mutants to form flagella with a P ring, suggesting that FlgA plays an auxiliary role in P ring assembly. Far-Western blot analysis revealed that FlgA binds to both FlgI and FlgA itself. Though a direct FlgI–FlgI interaction in the absence of FlgA could not be demonstrated, an indirect or direct interaction between the FlgI proteins was observed in the presence of FlgA. FlgA alone was very unstable , but co-expression with FlgI could stabilize FlgA. This suggests the presence of FlgA–FlgI interaction . On the basis of these results, a hypothesis is proposed that FlgA acts as a periplasmic chaperone, which assists a polymerization reaction of FlgI into the P ring through FlgA–FlgI interaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-5-1171
2000-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/5/1461171a.html?itemId=/content/journal/micro/10.1099/00221287-146-5-1171&mimeType=html&fmt=ahah

References

  1. Aizawa S.-I., Dean G. E., Jones C. J., Macnab R. M., Yamaguchi S. 1985; Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium. J Bacteriol 161:836–849
    [Google Scholar]
  2. Akiba T., Yoshimura H., Namba K. 1991; Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid. Science 252:1544–1546 [CrossRef]
    [Google Scholar]
  3. Amann E., Ochs B., Abel K. J. 1988; Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315 [CrossRef]
    [Google Scholar]
  4. Dailey F. E., Berg H. C. 1993; Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci USA 90:1043–1047 [CrossRef]
    [Google Scholar]
  5. Daniels C. J., Bole D. G., Quay S. C., Oxender D. L. 1981; Role for membrane potential in the secretion of protein into the periplasm of Escherichia coli. Proc Natl Acad Sci USA 78:5396–5400 [CrossRef]
    [Google Scholar]
  6. DePamphilis M. L., Adler J. 1971a; Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis. J Bacteriol 105:384–395
    [Google Scholar]
  7. DePamphilis M. L., Adler J. 1971b; Attachment of flagellar basal bodies to the cell envelope: specific attachment to the outer, lipopolysaccharide membrane and the cytoplasmic membrane. J Bacteriol 105:396–407
    [Google Scholar]
  8. Eisenberg D. 1999; How chaperones protect virgin proteins. Science 285:1021–1022 [CrossRef]
    [Google Scholar]
  9. Fan F., Macnab R. M. 1996; Enzymatic characterization of FliI: an ATPase involved in flagellar assembly in Salmonella typhimurium. J Biol Chem 271:31981–31988 [CrossRef]
    [Google Scholar]
  10. Fraser G. M., Bennett J. C. Q., Hughes C. 1999; Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 32:569–580 [CrossRef]
    [Google Scholar]
  11. Homma M., Komeda Y., Iino T., Macnab R. M. 1987; The flaFIX gene product of Salmonella typhimurium is a flagellar basal body component with a signal peptide for export. J Bacteriol 169:1493–1498
    [Google Scholar]
  12. Homma M., Kutsukake K., Hasebe M., Iino T., Macnab R. M. 1990; FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J Mol Biol 211:465–477 [CrossRef]
    [Google Scholar]
  13. Horwich A. L., Weber-Ban E. U., Finley D. 1999; Chaperone rings in protein folding and degradation. Proc Natl Acad Sci USA 96:11033–11040 [CrossRef]
    [Google Scholar]
  14. Hultgren S. J., Jones C. H., Normark S. 1996; Bacterial adhesins and their assembly. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 2730–2756Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Jones C. J., Macnab R. M. 1990; Flagellar assembly in Salmonella typhimurium: analysis with temperature-sensitive mutants. J Bacteriol 172:1327–1339
    [Google Scholar]
  16. Jones C. J., Homma M., Macnab R. M. 1987; Identification of proteins of the outer (L and P) rings of the flagellar basal body of Escherichia coli. J Bacteriol 169:1489–1492
    [Google Scholar]
  17. Jones C. J., Homma M., Macnab R. M. 1989; L-, P-, and M-ring proteins of the flagellar basal body of Salmonella typhimurium: gene sequences and deduced protein sequences. J Bacteriol 171:3890–3900
    [Google Scholar]
  18. Jones C. J., Macnab R. M., Okino H., Aizawa S. 1990; Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J Mol Biol 212:377–387 [CrossRef]
    [Google Scholar]
  19. Kubori T., Shimamoto N., Yamaguchi S., Namba K., Aizawa S. 1992; Morphological pathway of flagellar assembly in Salmonella typhimurium. J Mol Biol 226:433–446 [CrossRef]
    [Google Scholar]
  20. Kubori T., Yamaguchi S., Aizawa S.-I. 1997; Assembly of the switch complex onto the MS ring complex of Salmonella typhimurium does not require any other flagellar proteins. J Bacteriol 179:813–817
    [Google Scholar]
  21. Kutsukake K. 1994; Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol Gen Genet 243:605–612
    [Google Scholar]
  22. Kutsukake K. 1997; Hook-length control of the export-switching machinery involves a double-locked gate in Salmonella typhimurium flagellar morphogenesis. J Bacteriol 179:1268–1273
    [Google Scholar]
  23. Kutsukake K., Iino T. 1994; Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J Bacteriol 176:3598–3605
    [Google Scholar]
  24. Kutsukake K., Iino T., Komeda Y., Yamaguchi S. 1980; Functional homology of fla genes between Salmonella typhimurium and Escherichia coli. Mol Gen Genet 178:59–67 [CrossRef]
    [Google Scholar]
  25. Kutsukake K., Ohya Y., Iino T. 1990; Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747
    [Google Scholar]
  26. Kutsukake K., Okada T., Yokoseki T., Iino T. 1994; Sequence analysis of the flgA gene and its adjacent region in Salmonella typhimurium, and identification of another flagellar gene, flgN. Gene 143:49–54 [CrossRef]
    [Google Scholar]
  27. Lei S.-P., Lin H.-C., Wang S.-S., Callaway J., Wilcox G. 1987; Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J Bacteriol 169:4379–4383
    [Google Scholar]
  28. Marykwas D. L., Schmidt S. A., Berg H. C. 1996; Interacting components of the flagellar motor of Escherichia coli revealed by the two-hybrid system in yeast. J Mol Biol 256:564–576 [CrossRef]
    [Google Scholar]
  29. Nambu T., Minamino T., Macnab R. M., Kutsukake K. 1999; Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J Bacteriol 181:1555–1561
    [Google Scholar]
  30. Sancar A., Hack A. M., Rupp W. D. 1979; Simple method for identification of plasmid-coded proteins. J Bacteriol 137:692–693
    [Google Scholar]
  31. Shimamoto T., Inouye M., Inouye S. 1995; The formation of the 2′,5′-phosphodiester linkage in the cDNA priming reaction by bacterial reverse transcriptase in a cell-free system. J Biol Chem 270:581–588 [CrossRef]
    [Google Scholar]
  32. Studier F. W. 1991; Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44 [CrossRef]
    [Google Scholar]
  33. Suzuki T., Iino T., Horiguchi T., Yamaguchi S. 1978; Incomplete flagellar structures in nonflagellate mutants of Salmonella typhimurium. J Bacteriol 133:904–915
    [Google Scholar]
  34. Ueno T., Oosawa K., Aizawa S. 1992; M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. J Mol Biol 227:672–677 [CrossRef]
    [Google Scholar]
  35. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  36. Yokoseki T., Kutsukake K., Ohnishi K., Iino T. 1995; Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. Microbiology 141:1715–1722 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-5-1171
Loading
/content/journal/micro/10.1099/00221287-146-5-1171
Loading

Data & Media loading...

Most cited Most Cited RSS feed