1887

Abstract

is an obligate anaerobe that utilizes haem, transferrin and haemoglobin efficiently as sources of iron for growth, and has the ability to store haem on its cell surface, resulting in black pigmentation of colonies on blood agar plates. However, little is known about intracellular iron storage in this organism. Ferritin is one of the intracellular iron-storage proteins and may also contribute to the protection of organisms against oxidative stresses generated by intracellular free iron. A ferritin-like protein was purified from and the encoding gene () was cloned from chromosomal DNA using information on its amino-terminal amino acid sequence. Comparison of the amino acid sequence deduced from the nucleotide sequence of with those of known ferritins and bacterioferritins identified the protein as a ferritin and positioned it between proteins from the and . The ferritin was found to contain non-haem iron, thus confirming its identity. Construction and characterization of a ferritin-deficient mutant revealed that the ferritin was particularly important for the bacterium to survive under iron-depleted conditions (both haemin and transferrin starvation), indicating that intracellular iron is stored in ferritin regardless of the iron source and that the iron stored in ferritin is utilized under iron-restricted conditions. However, the ferritin appeared not to contribute to protection against oxidative stresses caused by peroxides and atmospheric oxygen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-5-1119
2000-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/5/1461119a.html?itemId=/content/journal/micro/10.1099/00221287-146-5-1119&mimeType=html&fmt=ahah

References

  1. Abdul-Tehrani, H., Hudson, A. J., Chang, Y., Timms, A. R., Hawkins, C., Williams, J. M., Harrison, P. M., Guest, J. R. & Andrews, S. C. ( 1999; ). Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181, 1415-1428.
    [Google Scholar]
  2. Almiron, M., Link, A. J., Furlong, D. & Kolter, R. ( 1992; ). A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 2646-2654.[CrossRef]
    [Google Scholar]
  3. Amano, A., Tamagawa, H., Takagaki, M., Murakami, Y., Shizukuishi, S. & Tsunemitsu, A. ( 1988; ). Relationship between enzyme activities involved in oxygen metabolism and oxygen tolerance in black-pigmented Bacteroides. J Dent Res 67, 1196-1199.[CrossRef]
    [Google Scholar]
  4. Andrews, S. C. ( 1998; ). Iron storage in bacteria. Adv Microb Physiol 40, 281-351.
    [Google Scholar]
  5. Andrews, S. C., Smith, J. M. A., Yewdall, S. J., Guest, J. R. & Harrison, P. M. ( 1991; ). Bacterioferritins and ferritins are distantly related in evolution. FEBS Lett 293, 164-168.[CrossRef]
    [Google Scholar]
  6. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) (1995). Short Protocols in Molecular Biology, 3rd edn. Chichester: Wiley.
  7. Bonomi, F., Kurtz, D. M.Jr & Cui, X. ( 1996; ). Ferroxidase activity of recombinant Desulfovibrio vulgaris rubrerythrin. J Biol Inorg Chem 1, 67-72.[CrossRef]
    [Google Scholar]
  8. Bozzi, M., Mignogna, G., Stefanini, S., Barra, D., Longhi, C., Valenti, P. & Chiancone, E. ( 1997; ). A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Listeria innocua. J Biol Chem 272, 3259-3265.[CrossRef]
    [Google Scholar]
  9. Chung, M. C. ( 1985; ). A specific iron stain for iron-binding proteins in polyacrylamide gels: application to transferrin and lactoferrin. Anal Biochem 148, 498-502.[CrossRef]
    [Google Scholar]
  10. Coulter, E. D., Shenvi, N. V. & Kurtz, D. M.Jr ( 1999; ). NADH peroxidase activity of rubrerythrin. Biochem Biophys Res Commun 255, 317-323.[CrossRef]
    [Google Scholar]
  11. Fletcher, H. M., Schenkein, H. A., Morgan, R. M., Bailey, K. A., Berry, C. R. & Macrina, F. L. ( 1995; ). Virulence of Porphyromonas gingivalis W83 mutant defective in prtH gene. Infect Immun 63, 1521-1528.
    [Google Scholar]
  12. Frazier, B. A., Pfeifer, J. D., Russell, D. G., Falk, P., Olsen, A. N., Hammar, M., Westblom, T. U. & Normark, S. J. ( 1993; ). Paracrystalline inclusions of a novel ferritin containing nonheme iron, produced by the human gastric pathogen Helicobacter pylori: evidence for a third class of ferritins. J Bacteriol 175, 966-972.
    [Google Scholar]
  13. Guerinot, M. L. ( 1994; ). Microbial iron transport. Annu Rev Microbiol 48, 743-772.[CrossRef]
    [Google Scholar]
  14. Halliwell, B. & Gutteridge, M. C. ( 1992; ). Biologically relevent metal iron-dependent hydroxyl radical generation: an update. FEBS Lett 307, 108-112.[CrossRef]
    [Google Scholar]
  15. Hudson, A. J., Andrews, S. C., Hawkins, J. M., Williams, J. M., Izuhara, M., Meldrum, F. C., Mann, S., Harrison, P. M. & Guest, J. R. ( 1993; ). Overproduction, purification and characterization of Escherichia coli ferritin. Eur J Biochem 218, 985-995.[CrossRef]
    [Google Scholar]
  16. Hugenholtz, P., Goebel, B. M. & Pace, N. R. ( 1998; ). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765-4774.
    [Google Scholar]
  17. Izuhara, M., Takanume, K. & Takata, R. ( 1991; ). Cloning and sequencing of an Escherichia coli K12 gene which encodes a polypeptide having similarity to the human ferritin H subunit. Mol Gen Genet 225, 510-513.
    [Google Scholar]
  18. Keyer, K. & Imlay, J. A. ( 1996; ). Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 193, 13635-13640.
    [Google Scholar]
  19. Keyer, K., Gort, A. S. & Imlay, J. A. ( 1995; ). Superoxide and the production of oxidative DNA damage. J Bacteriol 177, 6782-6790.
    [Google Scholar]
  20. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  21. Lehmann, Y., Meile, L. & Teuber, M. ( 1996; ). Rubrerythrin from Clostridium perfringens: cloning of the gene, purification of the protein, and characterization of its superoxide dismutase function. J Bacteriol 178, 7152-7158.
    [Google Scholar]
  22. Lippke, J. A., Strzempko, M. N., Raia, F. F., Simon, S. L. & French, C. K. ( 1987; ). Isolation of intact high-molecular-weight DNA by using guanidine isothiocyanate. Appl Environ Microbiol 53, 2588-2589.
    [Google Scholar]
  23. Lynch, M. C. & Kuramitsu, H. ( 1999; ). Role of superoxide dismutase activity in the physiology of Porphyromonas gingivalis. Infect Immun 67, 3367-3375.
    [Google Scholar]
  24. McCord, J. M. & Day, E. D.Jr ( 1978; ). Superoxide-dependent production of hydroxyl radical catalyzed by iron–EDTA complex. FEBS Lett 86, 139-142.[CrossRef]
    [Google Scholar]
  25. McCormick, M. L., Buettner, G. R. & Britigan, B. E. ( 1998; ). Endogenous superoxide dismutase levels regulate iron-dependent hydroxyl radical formation in Escherichia coli exposed to hydrogen peroxide. J Bacteriol 180, 622-625.
    [Google Scholar]
  26. Martinez, A. & Kolter, R. ( 1997; ). Protection of DNA during oxidative stress by the nonspecfic DNA-binding protein Dps. J Bacteriol 179, 5188-5194.
    [Google Scholar]
  27. Miller, R. A. & Britigan, B. E. ( 1997; ). Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10, 1-18.
    [Google Scholar]
  28. Nakayama, K. ( 1994; ). Rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis. J Bacteriol 176, 1939-1943.
    [Google Scholar]
  29. Nakayama, K., Ratnayake, D. B., Tsukuba, T., Kadowaki, T., Yamamoto, K. & Fujimura, S. ( 1998; ). Haemoglobin receptor protein is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis. Mol Microbiol 27, 51-61.[CrossRef]
    [Google Scholar]
  30. Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.
  31. O’Connell, M. J., Ward, R. J., Baum, H. & Peter, T. J. ( 1985; ). The role of iron in ferritin and haemosiderin-mediated lipid peroxidation in liposomes. Biochem J 229, 135-139.
    [Google Scholar]
  32. Rocha, E. R., Andrews, S. C., Keen, J. N. & Brock, J. H. ( 1992; ). Isolation of ferritin from Bacteroides fragilis. FEMS Microbiol Lett 95, 207-212.[CrossRef]
    [Google Scholar]
  33. Sambrook, J., Fritsch, E. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Smalley, J. W., Silver, J., Marsh, P. J. & Birss, A. J. ( 1998; ). The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the μ-oxo dimeric form: an oxidative buffer and a possible pathogenic mechanism. Biochem J 331, 681-685.
    [Google Scholar]
  35. Tazaki, K., Inoshita, E., Amano, A., Hanioka, T., Tamagawa, H. & Shizukuishi, S. ( 1995; ). Interaction of Porphyromonas gingivalis with transferrin. FEMS Microbiol Lett 131, 161-166.[CrossRef]
    [Google Scholar]
  36. Theil, E. C. ( 1987; ). Ferritin: structure, gene regulation and cellular function in animals, plants and microorganisms. Annu Rev Biochem 56, 289-315.[CrossRef]
    [Google Scholar]
  37. Thomas, P. E., Ryan, D. & Levin, W. ( 1976; ). An improved staining procedure for detection of the peroxidase activity of cytochrome p-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75, 168-176.[CrossRef]
    [Google Scholar]
  38. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350-4354.[CrossRef]
    [Google Scholar]
  39. Wai, S. N., Takata, T., Takade, A., Hamasaki, N. & Amako, K. ( 1995; ). Purification and characterization of ferritin from Campylobacter jejuni. Arch Microbiol 164, 1-6.[CrossRef]
    [Google Scholar]
  40. Wai, S. N., Nakayama, K., Umene, K., Moriya, T. & Amako, K. ( 1996; ). Construction of a ferritin-deficient mutant of Campylobacter jejuni: contribution of ferritin to iron storage and protection against oxidative stress. Mol Microbiol 20, 1127-1134.[CrossRef]
    [Google Scholar]
  41. Wallace, R. B. & Miyada, C. G. ( 1987; ). Oligonucleotide probes for the screening of recombinant DNA libraries. Methods Enzymol 152, 432-442.
    [Google Scholar]
  42. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221-271.
    [Google Scholar]
  43. Wolf, S. G., Frenkiel, D., Arad, T., Finkel, S., Kolter, R. & Minsky, A. ( 1999; ). DNA protection by stress-induced biocrystallization. Nature 400, 83-85.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-5-1119
Loading
/content/journal/micro/10.1099/00221287-146-5-1119
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error