1887

Abstract

All catalyse the conversion of pyruvate to acetyl-CoA via a simple pyruvate oxidoreductase. This is in contrast to the and most aerobic bacteria, which use the pyruvate dehydrogenase multienzyme complex [PDHC], consisting of multiple copies of three component enzymes: E1 (pyruvate decarboxylase), E2 (lipoate acetyl-transferase) and E3 (dihydrolipoamide dehydrogenase, DHLipDH). Until now no PDHC activity has been found in the , although DHLipDH has been discovered in the extremely halophilic and its gene sequence has been determined. In this paper, the discovery and sequencing of an operon containing the gene in the halophilic archaeon are reported. Upstream of the gene are 3 ORFs which show highest sequence identities with the α, β and genes of the PDHC from Gram-positive organisms. Structural predictions of the proposed protein product of the gene show a domain structure characteristic of the E2 component in PDHCs, and catalytically important residues, including the lysine to which the lipoic acid cofactor is covalently bound, are conserved. Northern analyses indicate the transcription of the whole operon, but no PDHC enzymic activity could be detected in cell extracts. The presence in the gene of an insertion (equivalent to approximately 100 aa) not found in bacterial or eukaryal E2 proteins, might be predicted to prevent multienzyme complex assembly. This is the first detailed report of the genes for a putative 2-oxoacid dehydrogenase complex in the , and the evolutionary and metabolic consequences of these findings are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-5-1061
2000-05-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/5/1461061a.html?itemId=/content/journal/micro/10.1099/00221287-146-5-1061&mimeType=html&fmt=ahah

References

  1. Bock, A.-K., Schönheit, P. & Teixeira, M. ( 1997; ). The iron-sulfur centres of the pyruvate:ferredoxin oxidoreductase from Methanosarcina barkeri (Fusaro). FEBS Lett 414, 209-212.[CrossRef]
    [Google Scholar]
  2. Danson, M. J. ( 1988; ). Dihydrolipoamide dehydrogenase: a ‘new’ function for an old enzyme? Biochem Soc Trans 16, 87-89.
    [Google Scholar]
  3. Danson, M. J. ( 1993; ). Central metabolism of the Archaea. New Compr Biochem 26, 1-24.
    [Google Scholar]
  4. Danson, M. J. & Hough, D. W. ( 1997; ). The structural basis of protein halophilicity. Comp Biochem Physiol 117A, 307-312.
    [Google Scholar]
  5. Danson, M. J., Eisenthal, R., Hall, S., Kessell, S. R. & Williams, D. L. ( 1984; ). Dihydrolipoamide dehydrogenase from halophilic archaebacteria. Biochem J 218, 811-818.
    [Google Scholar]
  6. Danson, M. J., Russell, R. J. M., Hough, D. W. & Taylor, G. L. ( 1998; ). Comparative enzymology as an aid to understanding evolution. In Thermophiles: the Keys to Molecular Evolution and the Origin of Life?, pp. 255-267. Edited by M. W. W. Adams & J. Wiegel. London: Taylor & Francis.
  7. Dardel, F., Davis, A. L., Laue, E. D. & Perham, R. N. ( 1993; ). The three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J Mol Biol 229, 1037-1048.[CrossRef]
    [Google Scholar]
  8. Goda, S. K. & Minton, N. P. ( 1995; ). A simple procedure for gel electrophoresis and Northern blotting of RNA. Nucleic Acids Res 23, 3357-3358.[CrossRef]
    [Google Scholar]
  9. Green, J. D. F., Laue, E. D., Perham, R. N., Ali, S. T. & Guest, J. R. ( 1995; ). Three-dimensional structure of a lipoyl domain from the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol 248, 328-343.
    [Google Scholar]
  10. Hawkins, C. F., Borges, A. & Perham, R. N. ( 1989; ). A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett 255, 77-82.[CrossRef]
    [Google Scholar]
  11. Hendle, J., Mattevi, A., Westphal, A. H., Spee, J., de Kok, A., Teplyakov, A. & Hol, W. G. J. ( 1995; ). Crystallographic and enzymic investigations on the role of Ser558, His610, and Asn614 in the catalytic mechanism of Azotobacter vinelandii dihydrolipoamide acetyltransferase. Biochemistry 34, 4287-4298.[CrossRef]
    [Google Scholar]
  12. Jolley, K. A., Rapaport, E., Hough, D. W., Danson, M. J., Woods, W. G. & Dyall-Smith, M. L. ( 1996; ). Dihydrolipoamide dehydrogenase from the halophilic archaeon Haloferax volcanii – homologous overexpression of the cloned gene. J Bacteriol 178, 3044-3048.
    [Google Scholar]
  13. Jolley, K. A., Russell, R. J. M., Hough, D. W. & Danson, M. J. ( 1997; ). Site-directed mutagenesis and halophilicity of dihydrolipoamide dehydrogenase from the halophilic archaeon, Haloferax volcanii. Eur J Biochem 248, 362-369.[CrossRef]
    [Google Scholar]
  14. Kalia, Y. N., Brocklehurst, S. M., Hipps, D. S., Appella, E., Sakaguchi, K. & Perham, R. N. ( 1993; ). The high resolution structure of the peripheral subunit-binding domain of dihydrolipoamide acetyltransferase from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. J Mol Biol 230, 323-341.[CrossRef]
    [Google Scholar]
  15. Kerscher, L. & Oesterhelt, D. ( 1981; ). The catalytic mechanism of 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. Eur J Biochem 116, 595-600.[CrossRef]
    [Google Scholar]
  16. Mande, S. S., Sarfaty, S., Allen, M. D., Perham, R. N. & Hol, W. G. J. ( 1996; ). Protein-protein interactions in the pyruvate dehydrogenase multienzyme complex: dihydrolipoamide dehydrogenase complexed with the binding domain of dihydrolipoamide acetyltransferase. Structure 4, 277-286.[CrossRef]
    [Google Scholar]
  17. Normark, S., Bergstron, S., Edlund, T., Grundstrom, T., Jaurin, B., Lindberg, F. P. L. & Olsson, O. ( 1983; ). Overlapping genes. Annu Rev Genet 17, 499-525.[CrossRef]
    [Google Scholar]
  18. Nuttall, S. D. & Dyall-Smith, M. L. ( 1993; ). HF1 and HF2: novel bacteriophages of halophilic Archaea. Virology 197, 678-684.[CrossRef]
    [Google Scholar]
  19. Palmer, J. R. & Daniels, C. J. ( 1995; ). In vivo definition of an archaeal promoter. J Bacteriol 177, 1844-1849.
    [Google Scholar]
  20. Perham, R. N. ( 1991; ). Domains, motifs and linkers in 2-oxoacid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30, 8501-8512.[CrossRef]
    [Google Scholar]
  21. Perham, R. N. ( 1996; ). Interaction of protein domains in the assembly and mechanism of 2-oxo acid dehydrogenase multienzyme complexes. In Alpha-Keto Acid Dehydrogenase Complexes, pp. 1-15. Edited by M. S. Patel, T. E. Roche & R. A. Harris. Basel: Birkhäuser.
  22. Plaga, W., Lottspeich, F. & Oesterhelt, D. ( 1992; ). Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium. Eur J Biochem 205, 391-397.[CrossRef]
    [Google Scholar]
  23. Pratt, K. J., Carles, C., Carne, T. J., Danson, M. J. & Stevenson, K. J. ( 1989; ). Detection of bacterial lipoic acid: a modified gas chromatographic-mass spectrometric procedure. Biochem J 258, 749-754.
    [Google Scholar]
  24. Robien, M. A., Clore, G. M., Omichinski, J. G., Perham, R. N., Appella, E., Sakaguchi, K. & Gronenborn, A. M. ( 1992; ). Three-dimensional solution structure of the E3-binding domain of the dihydrolipoamide succinyltransferase core from the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli. Biochemistry 31, 3463-3471.[CrossRef]
    [Google Scholar]
  25. Rost, B. ( 1996; ). PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol 266, 525-539.
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Stepp, L. R. & Reed, L. J. ( 1985; ). Active-site modification of mammalian pyruvate dehydrogenase by pyridoxal 5′-phosphate. Biochemistry 24, 7187-7191.[CrossRef]
    [Google Scholar]
  28. Vettakkorumakankav, N. N. & Stevenson, K. J. ( 1992; ). Dihydrolipoamide dehydrogenase from Haloferax volcanii: gene cloning, complete primary sequence and comparison to other dihydrolipoamide dehydrogenases. Biochem Cell Biol 70, 656-663.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-5-1061
Loading
/content/journal/micro/10.1099/00221287-146-5-1061
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error