1887

Abstract

Pili of are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of an O-linked trisaccharide, Gal(β1-4)Gal(α1-3)2,4-diacetimido-2,4,6-trideoxyhexose. In a previous study the authors identified and characterized a gene, , encoding a galactosyltransferase involved in pilin glycosylation. In this study a set of random genomic sequences from strain MC58 was used to search for further genes involved in pilin glycosylation. Initially, an open reading frame was identified, and designated (ilin ycosylation gene D), which was homologous to genes involved in polysaccharide biosynthesis. The region adjacent to this gene was cloned and nucleotide sequence analysis revealed two further genes, and , which were also homologous with genes involved in polysaccharide biosynthesis. Insertional mutations were constructed in , and in C311#3, a strain with well-defined LPS and pilin-linked glycan structures, to determine whether these genes had a role in the biosynthesis of either of these molecules. Analysis of these mutants revealed that there was no alteration in the phenotype of LPS in any of the mutant strains as judged by SDS-PAGE gel migration. In contrast, increased gel migration of the pilin subunit molecules of , and mutants by Western analysis was observed. Pilin from each of the , and mutants did not react with a terminal-galactose-specific stain, confirming that the gel migration differences were due to the alteration or absence of the pilin-linked trisaccharide structure in these mutants. In addition, antisera specific for the C311#3 trisaccharide failed to react with pilin from the , , and mutants. Analysis of nucleotide sequence homologies has suggested specific roles for , and in the biosynthesis of the 2,4-diacetimido-2,4,6-trideoxyhexose structure.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-4-967
2000-04-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/4/1460967a.html?itemId=/content/journal/micro/10.1099/00221287-146-4-967&mimeType=html&fmt=ahah

References

  1. Alexander, H. E. ( 1965; ). The Haemophilus group. In Bacterial and Mycotic Infections of Man, pp. 724-741. Edited by R. J. Dabos & J. G. Hirsch. London: Pitman Medical Publishing Co.
  2. Allen, A. & Maskell, D. ( 1996; ). The identification, cloning and mutagenesis of a genetic locus required for lipopolysaccharide biosynthesis in Bordetella pertussis. Mol Microbiol 19, 37-52.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Madden T. L., Schäffer A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef]
    [Google Scholar]
  4. Annunziato, P. W., Wright, L. F., Vann, W. F. & Silver, R. P. ( 1995; ). Nucleotide sequence and genetic analysis of the neuD and neuB genes in region 2 of the polysialic acid gene cluster of Escherichia coli K1. J Bacteriol 177, 312-319.
    [Google Scholar]
  5. Appel, R. D., Bairoch, A. & Hochstrasser, D. F. ( 1994; ). A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19, 258-260.[CrossRef]
    [Google Scholar]
  6. Awram, P. & Smit, J. ( 1998; ). The Caulobacter crescentus paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus. J Bacteriol 180, 3062-3069.
    [Google Scholar]
  7. Bechthold, A., Sohng, J., Smith, T. M., Chu, X. & Floss, H. G. ( 1995; ). Identification of Streptomyces violaceoruber Tü22 genes involved in the biosynthesis of granaticin. Mol Gen Genet 248, 610-620.[CrossRef]
    [Google Scholar]
  8. Bilge, S. S., Vary, J. C., Dowell, S. F. & Tarr, P. I. ( 1996; ). Role of the Escherichia coli O157:H7 side chain in adherence and analysis of an rfb locus. Infect Immun 64, 4795-4801.
    [Google Scholar]
  9. Bruntner, C. & Bormann, C. ( 1998; ). The Streptomyces tendae Tü901 l-lysine 2-aminotransferase catalyses the initial reaction in nikkomycin D biosynthesis. Eur J Biochem 254, 347-355.[CrossRef]
    [Google Scholar]
  10. Comstock, L. E., Johnson, J. A., Michalski, J. M., Morris, J. G. & Kaper, J. B. ( 1996; ). Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterisation of the insertion site in the chromosome of Vibrio cholerae O1. Mol Microbiol 19, 815-826.[CrossRef]
    [Google Scholar]
  11. Dicker, I. B. & Seetharam, S. ( 1992; ). What is known about the structure and function of the Escherichia coli protein FirA? Mol Microbiol 6, 817-823.[CrossRef]
    [Google Scholar]
  12. Dietzler, D. N. & Strominger, J. L. ( 1973; ). Characterisation of the 4-acetamido-4,6-dideoxyhexoses from Escherichia coli strains. J Biol Chem 248, 104-109.
    [Google Scholar]
  13. Drummelsmith, J. & Whitfield, C. ( 1999; ). Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a:K30). Mol Microbiol 31, 1321-1332.[CrossRef]
    [Google Scholar]
  14. Fallarino, A., Mavrangelos, C., Stroeher, U. H. & Manning, P. A. ( 1997; ). Identification of additional genes required for the O-antigen biosynthesis in Vibrio chloerae O1. J Bacteriol 179, 2147-2153.
    [Google Scholar]
  15. Forest, K. T., Dunham, S. A., Koomey, M. & Tainer, J. A. ( 1999; ). Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol Microbiol 31, 743-752.[CrossRef]
    [Google Scholar]
  16. Fry, B. N., Korolik, V., ten Brinke, J. A., Pennings, M. T., Zalm, R., Teunis, B. J., Coloe, P. J. & van der Zeijst, B. A. ( 1998; ). The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116. Microbiology 144, 2049-2061.[CrossRef]
    [Google Scholar]
  17. Gruber, A. & Zingales, B. ( 1995; ). Alternative method to remove antibacterial antibodies from antisera used for screening of expression libraries. Biotechniques 19, 28-29.
    [Google Scholar]
  18. Hamadeh, R. M., Estabrook, M. M., Zhou, P., Jarvis, G. A. & Griffiss, J. M. ( 1995; ). Anti-Gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing. Infect Immun 63, 4900-4906.
    [Google Scholar]
  19. Haselbeck, A. & Hösel, W. ( 1993; ). Immunological detection of glycoproteins on blots based on labelling with digoxigenin. Methods Mol Biol 14, 161-173.
    [Google Scholar]
  20. Hoke, C. & Vedros, N. A. ( 1982; ). Taxonomy of the neisseriae: deoxyribonucleic acid base composition, interspecific transformation, and deoxyribonucleic acid hybridization. Int J Syst Bacteriol 32, 57-66.[CrossRef]
    [Google Scholar]
  21. Jennings, M. P., Hood, D. W., Peak, I. R., Virji, M. & Moxon, E. R. ( 1995; ). Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol Microbiol 18, 729-740.[CrossRef]
    [Google Scholar]
  22. Jennings, M. P., Virji, M., Evans, D., Foster, V., Srikhanta, Y. N., Steeghs, L., van der Ley, P. & Moxon, E. R. ( 1998; ). Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol Microbiol 29, 975-984.[CrossRef]
    [Google Scholar]
  23. Jennings, M. P., Srikhanta, Y. N., Moxon, E. R., Kramer, M., Poolman, J. T., Kuipers, B. & van der Ley, P. ( 1999; ). The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145, 3013-3021.
    [Google Scholar]
  24. Korolik, V., Fry, B. N., Alderton, M. R., van der Zeijst, B. A. & Coloe, P. J. ( 1997; ). Expression of Campylobacter hyoilei lipo-oligosaccharide (LOS) antigens in Escherichia coli. Microbiology 143, 3481-3489.[CrossRef]
    [Google Scholar]
  25. van der Ley, P., Kramer, M., Martin, A., Richards, J. C. & Poolman, J. T. ( 1997; ). Analysis of the icsBA locus required for biosynthesis of the inner core region from Neisseria meningitidis lipopolysaccharide. FEMS Microbiol Lett 146, 247-253.[CrossRef]
    [Google Scholar]
  26. Linton, K. J., Jarvis, B. W. & Hutchinson, C. R. ( 1995; ). Cloning of the genes encoding thymidine diphospho-glucose 4,6-dehydratase and thymidine diphospho-4-keto-6-deoxyglucose 3,5-epimerase from the erythromycin-producing Saccharapolyspora erythraea. Gene 153, 33-40.[CrossRef]
    [Google Scholar]
  27. McGee, A. A. & Stephens, D. S. ( 1984; ). Common pathways of invasion of mucosal barriers by Neisseria gonorrhoeae and Neisseria meningitidis. Surv Synth Pathol Res 174, 1-10.
    [Google Scholar]
  28. Marceau, M. & Nassif, X. ( 1999; ). Role of glycosylation at Ser63 in production of soluble pilin in pathogenic Neisseria. J Bacteriol 181, 656-661.
    [Google Scholar]
  29. Marceau, M., Forest, K., Béretti, J.-C., Tainer, J. & Nassif, X. ( 1998; ). Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol Microbiol 27, 705-715.[CrossRef]
    [Google Scholar]
  30. Matsuhashi, M. & Strominger, J. L. ( 1964; ). Thymidine diphosphate 4-acetamido-4,6-dideoxyhexoses. I. Enzymatic synthesis by strains of Escherichia coli. J Biol Chem 239, 2454-2463.
    [Google Scholar]
  31. Matsuhashi, M. & Strominger, J. L. ( 1966; ). Thymidine diphosphate 4-acetamido-4,6-dideoxyhexoses. III. Purification and properties of thymidine diphosphate 4-keto-6-deoxy-d-glucose transaminase from Escherichia coli strain B. J Biol Chem 241, 4738-4744.
    [Google Scholar]
  32. Morse, S. A. & Knapp, J. S. ( 1992; ). The genus Neisseria. In The Prokaryotes, pp. 2495-2529. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  33. Nassif, X., Lowy, J., Stenberg, P., O’Gaora, P., Ganji, A. & So, M. ( 1993; ). Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 8, 719-725.[CrossRef]
    [Google Scholar]
  34. Parge, H. E., Forest, K. T., Hickey, M. J., Christensen, D. A., Getzoff, E. D. & Tainer, J. R. ( 1995; ). Structure of the fibre-forming protein pilin at 2·6Å resolution. Nature 387, 32-38.
    [Google Scholar]
  35. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. ( 1988; ). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491.[CrossRef]
    [Google Scholar]
  36. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Sau, S. & Lee, C. Y. ( 1996; ). Cloning of type 8 capsule genes and analysis of gene clusters for the production of different capsular polysaccharides in Staphylococcus aureus. J Bacteriol 178, 2118-2126.
    [Google Scholar]
  38. Sau, S., Bhasin, N., Wann, E. R., Lee, J. C., Foster, T. J. & Lee, C. Y. ( 1997a; ). The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143, 2395-2405.[CrossRef]
    [Google Scholar]
  39. Sau, S., Sun, J. & Lee, C. Y. ( 1997b; ). Molecular characterisation and transcriptional analysis of type 8 capsule genes in Staphylococcus aureus. J Bacteriol 179, 1614-1621.
    [Google Scholar]
  40. Scholten, R. J. P. M., Kuipers, B., Valkenberg, H. A., Dankert, J., Zollinger, W. D. & Poolman, J. T. ( 1994; ). Lipo-oligosaccharide immunotyping of Neisseria meningitidis by a whole-cell ELISA using monoclonal antibodies and association of immunotype with serogroup, serotype and subtype. J Med Microbiol 41, 236-243.[CrossRef]
    [Google Scholar]
  41. Seifert, H. S. ( 1996; ). Questions about gonococcal pilus phase- and antigenic variation. Mol Microbiol 21, 433-440.[CrossRef]
    [Google Scholar]
  42. Skurnik, M., Venho, R., Toivanen, P. & Al-Hendy, A. ( 1995; ). A novel locus of Yersinia enterocolitica serotype O:3 involved in lipopolysaccharide outer core biosynthesis. Mol Microbiol 17, 575-594.[CrossRef]
    [Google Scholar]
  43. Smith, D. R., Doucette-Stamm, L. A., Deloughery, C. & 34 other authors ( 1997; ). Complete genome sequence of Methanobacterium thermoautotrophicum delta H: functional analysis and comparative genomics. J Bacteriol 179, 7135–7155.
    [Google Scholar]
  44. Sofia, H. J., Burland, V., Daniels, D. L., Lunkett, G.III & Blattner, F. R. ( 1994; ). Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76·0 to 81·5 minutes. Nucleic Acids Res 22, 2576-2586.[CrossRef]
    [Google Scholar]
  45. Stimson, E., Makepeace, K., Dell, A. & 9 other authors ( 1995; ). Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol Microbiol 17, 1201–1214.[CrossRef]
    [Google Scholar]
  46. Stimson, E., Virji, M., Barker, S. & 7 other authors ( 1996; ). Discovery of a novel protein modification: alpha-glycerophosphate is a substituent of meningococcal pilin. Biochem J 316, 29–33.
    [Google Scholar]
  47. Stroeher, U. H., Karageorgos, L. E., Brown, M. H., Morona, R. & Manning, P. A. ( 1995; ). A putative pathway for perosamine biosynthesis is the first function encoded within the rfb region of Vibrio cholerae O1. Gene 166, 33-42.[CrossRef]
    [Google Scholar]
  48. Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J. & Guerry, P. ( 1999; ). Evidence for a system of general glycosylation in Campylobacter jejuni. Mol Microbiol 35, 1022-1030.
    [Google Scholar]
  49. Thorson, J. S., Lo, S. F., Liu, H.-W. & Hutchinson, C. R. ( 1993; ). Biosynthesis of 3,6-dideoxyhexoses: new mechanistic reflections upon 2,6-dideoxy, and amino sugar construction. J Am Chem Soc 115, 6993-6994.[CrossRef]
    [Google Scholar]
  50. Thorson, J. S., Lo, S. F., Ploux, O., He, X. & Liu, H.-W. ( 1994; ). Studies of the biosynthesis of 3,6-dideoxyhexoses: molecular cloning and characterisation of the asc (ascarylose) region from Yersinia pseudotuberculosis serogroup VA. J Bacteriol 176, 5483-5493.
    [Google Scholar]
  51. Tuomanen, E. I. ( 1996; ). Surprise? Bacteria glycosylate proteins too. J Clin Invest 98, 2659-2660.[CrossRef]
    [Google Scholar]
  52. Virji, M. ( 1997; ). Post-translational modifications of meningococcal pili. Identification of common substituents: glycans and α-glycerophosphate – a review. Gene 192, 141-147.[CrossRef]
    [Google Scholar]
  53. Virji, M., Kayhty, H., Ferguson, D. J., Alexandrescu, C., Heckels, J. E. & Moxon , E. R. ( 1991; ). The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol 5, 1831-1841.[CrossRef]
    [Google Scholar]
  54. Virji, M., Alexandrescu, C., Ferguson, D. J., Saunders, J. R. & Moxon, E. R. ( 1992; ). Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol 6, 1271-1279.[CrossRef]
    [Google Scholar]
  55. Virji, M., Saunders, J. R., Sims, G., Makepeace, K., Maskell, D. & Ferguson, D. J. ( 1993; ). Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10, 1013-1028.[CrossRef]
    [Google Scholar]
  56. Wang, L. & Reeves, P. R. ( 1994; ). Involvement of the galactosyl-1-phosphate transferase encoded by the Salmonella enterica rfbP gene in O-antigen subunit processing. J Bacteriol 176, 4348-4356.
    [Google Scholar]
  57. Wang, L. & Reeves, P. R. ( 1996; ). C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalysing the first step of O-antigen synthesis. J Bacteriol 178, 2598-2604.
    [Google Scholar]
  58. Weiser, J. N., Goldberg, J. B., Pan, N., Wilson, L. & Virji, M. ( 1998; ). The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria menigitidis and Neisseria gonorrhoeae. Infect Immun 66, 4263-4267.
    [Google Scholar]
  59. Wolfgang, M., Lauer, P., Park, H.-S., Brossay, L., Herbert, J. & Koomey, M. ( 1998; ). PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29, 321-330.[CrossRef]
    [Google Scholar]
  60. Wood, A. C., Oldfield , N. J., O’Dwyer, C. A. & Ketley, J. M. ( 1999; ). Cloning, mutation and distribution of a putative lipopolysaccharide biosynthesis locus in Campylobacter jejuni. Microbiology 145, 379-388.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-4-967
Loading
/content/journal/micro/10.1099/00221287-146-4-967
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error