1887

Abstract

, like other pathogens, has to compete with the host for a limited supply of available iron. Consequently, iron acquisition is likely to be an important factor for the growth, survival and virulence of this organism. It was previously demonstrated that has a surface-associated ferric reductase similar to that of . Therefore, functional rescue of a mutant was used to isolate a ferric reductase gene (). This gene has been previously identified. However, the workers had not observed any functional reductase activity associated with the gene. The discrepancy with the findings in this report appears to be due to the clone previously reported carrying a non-contiguous piece of DNA. Results shown in this paper demonstrate that transcription is regulated in response to levels of iron and copper. This is the first demonstration of a functional ferric reductase gene from

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-4-869
2000-04-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/4/1460869a.html?itemId=/content/journal/micro/10.1099/00221287-146-4-869&mimeType=html&fmt=ahah

References

  1. Askwith, C., Eide, D., Van Ho, A., Bernard, P. S., Li, L., Davis-Kaplan, S., Sipe, D. M. & Kaplan, J. ( 1994; ). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403-410.[CrossRef]
    [Google Scholar]
  2. Church, G. M. & Gilbert, W. ( 1984; ). Genomic sequencing. Proc Natl Acad Sci USA 81, 1991-1995.[CrossRef]
    [Google Scholar]
  3. Dancis, A., Klausner, R. D., Hinnebusch, A. G. & Barriocanal, J. G. ( 1990; ). Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10, 2294-2301.
    [Google Scholar]
  4. Dancis, A., Roman, D. G., Anderson, G. J., Hinnebusch, A. G. & Klausner, R. D. ( 1992; ). Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci USA 89, 3869-3873.[CrossRef]
    [Google Scholar]
  5. Eide, D., Davis-Kaplan, S., Jordan, I., Sipe, D. & Kaplan, J. ( 1992; ). Regulation of iron uptake in Saccharomyces cerevisiae: the ferri-reductase and Fe(II) transporter are regulated independently. J Biol Chem 267, 2074-2081.
    [Google Scholar]
  6. Finegold, A. A., Shatwell, K. P., Segal, A. W., Klausner, R. D. & Dancis, A. ( 1996; ). Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271, 31021-31024.[CrossRef]
    [Google Scholar]
  7. Gale, G. A., Bendel, C. M., McClellan, M., Hauser, M., Becker, J. M., Berman, J. & Hostetter, M. K. ( 1998; ). Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene INT1. Science 279, 1355-1358.[CrossRef]
    [Google Scholar]
  8. Georgatsou, E. & Alexandraki, D. ( 1994; ). Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 14, 3065-3073.
    [Google Scholar]
  9. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. ( 1992; ). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1452.
    [Google Scholar]
  10. Hassett, R. & Kosman, D. J. ( 1995; ). Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem 270, 128-134.[CrossRef]
    [Google Scholar]
  11. Holm, C., Meek-Wagner, D. W., Fangman, W. L. & Botstein, D. ( 1986; ). A rapid efficient method for isolating DNA from yeast. Gene 42, 169-173.[CrossRef]
    [Google Scholar]
  12. Hube, B., Sanglard, D., Odds, F. C., Hess, D., Monod, M., Brown, A. J. P. & Gow, N. A. R. ( 1997; ). Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65, 3529-3538.
    [Google Scholar]
  13. Ish-Horowicz, D. & Burke, J. F. ( 1981; ). Rapid and efficient cosmid cloning. Nucleic Acids Res 9, 2989-2998.[CrossRef]
    [Google Scholar]
  14. Ismail, A., Bedell, G. W. & Lupan, D. W. ( 1985; ). Siderophore production by the pathogenic yeast Candida albicans. Biochem Biophys Res Commun 130, 885-891.[CrossRef]
    [Google Scholar]
  15. Komshian, S. V., Uwaydah, A. K., Sobel, J. D. & Crane, L. R. ( 1989; ). Fungemia caused by Candida species and Torulopsis glabrata in the hospitalized patient. Rev Infect Dis 11, 379-390.[CrossRef]
    [Google Scholar]
  16. Kyte, J. & Doolittle, R. F. ( 1982; ). A simple method for displaying the hydrophobic character of a protein. J Mol Cell Biol 157, 105-132.
    [Google Scholar]
  17. Labbe, S., Zhu, Z. W. & Thiele, D. J. ( 1997; ). Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272, 15951-15958.[CrossRef]
    [Google Scholar]
  18. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  19. Manns, J. M., Mosser, D. M. & Buckley, H. R. ( 1994; ). Production of hemolytic factor by Candida albicans. Infect Immun 62, 5154-5156.
    [Google Scholar]
  20. Martins, L. J., Jensen, L. T., Simons, J. R., Keller, G. L. & Winge, D. R. ( 1998; ). Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273, 23716-23721.[CrossRef]
    [Google Scholar]
  21. Moors, M. A., Stull, T. L., Blank, K. J., Buckley, H. R. & Mosser, D. M. ( 1992; ). A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175, 1643-1651.[CrossRef]
    [Google Scholar]
  22. Morrissey, J. A., Williams, P. H. & Cashmore, A. M. ( 1996; ). Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142, 485-492.[CrossRef]
    [Google Scholar]
  23. Pearson, V. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85, 2444-2448.[CrossRef]
    [Google Scholar]
  24. Schmidt, M. E., Brown, T. A. & Trumpower, B. L. ( 1990; ). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18, 3091.[CrossRef]
    [Google Scholar]
  25. Sedgwick, S. G. & Morgan, B. A. ( 1994; ). Locating, DNA sequencing, and disrupting yeast genes using tagged Tn1000. In Methods in Molecular Genetics: Molecular Microbiology Techniques, pp. 131-140. Edited by K. W. Adolph. San Diego, CA and London: Academic Press.
  26. Sherman, F., Fink, G. R. & Hicks, J. B. (1986). Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Stearman, R., Yuan, D. S., Yamaguchi-Iwai, I., Klausner, R. D. & Dancis, A. ( 1996; ). A permease-oxidase complex involved in high affinity uptake in yeast. Science 271, 1552-1557.[CrossRef]
    [Google Scholar]
  28. Sweet, S. P. & Douglas, L. J. ( 1991a; ). Effect of iron deprivation on surface composition and virulence determinants of Candida albicans. J Gen Microbiol 137, 859-865.[CrossRef]
    [Google Scholar]
  29. Sweet, S. P. & Douglas, L. J. ( 1991b; ). Effect of iron concentration on siderophore synthesis and pigment production by Candida albicans. FEMS Microbiol Lett 80, 87-92.[CrossRef]
    [Google Scholar]
  30. Valenti, P., Visca, P., Antonini G. & Orsi, N. ( 1986; ). Interaction between lactoferrin and ovotransferrin and Candida cells. FEMS Microbiol Lett 33, 271–275.[CrossRef]
    [Google Scholar]
  31. Wickerham, L. J. ( 1951; ). Taxonomy of yeast. US Dept Agric Tech Bull 1029, 11-56.
    [Google Scholar]
  32. Wooldridge, K. G. & Williams, P. H. ( 1993; ). Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12, 325-348.[CrossRef]
    [Google Scholar]
  33. Yamada-Okabe, T., Shimmi, O., Doi, R., Mizumoto, K., Arisawa, M. & Yamada-Okabe, H. ( 1996; ). Isolation of the mRNA-capping enzyme and ferric-reductase-related genes from Candida albicans. Microbiology 142, 2515-2523.[CrossRef]
    [Google Scholar]
  34. Yamaguichi-Iwai, Y., Dancis, A. & Klausner, R. D. ( 1995; ). AFT1– a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14, 1231-1239.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-4-869
Loading
/content/journal/micro/10.1099/00221287-146-4-869
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error