1887

Abstract

Two types of Tn-induced mutants defective in extracellular amylase activity were isolated from the moderate halophile DSM 5425. Type I mutants displayed amylase activity in the periplasm, and were unable to use any of the carbon sources tested, including starch and its hydrolysis product maltose. The type II mutant was affected in the gene responsible for the synthesis of the extracellular α-amylase. This gene () was isolated by functional complementation of mutant II and sequenced. The deduced protein (AmyH) showed a high degree of homology to a proposed family of α-amylases consisting of enzymes from (), , streptomycetes, insects and mammals. AmyH contained the four highly conserved regions in amylases, as well as a high content of acidic amino acids. The gene was functional in the moderate halophile and, when cloned in a multicopy vector, in . AmyH is believed to be the first extracellular-amylase-encoding gene isolated from a moderate halophile, a group of extremophiles of great biotechnological potential. In addition, and were able to secrete the thermostable α-amylase from , indicating that members of the genus are good candidates for use as cell factories to produce heterologous extracellular enzymes.

Keyword(s): Halomonas , halophile and α-amylase
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-4-861
2000-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/4/1460861a.html?itemId=/content/journal/micro/10.1099/00221287-146-4-861&mimeType=html&fmt=ahah

References

  1. Cánovas D., Vargas C., Iglesias-Guerra F., Csonka L. N., Rhodes D., Ventosa A., Nieto J. J. 1997; Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J Biol Chem 272:25794–25801 [CrossRef]
    [Google Scholar]
  2. Chang M. C., Chang J. C., Chen J. P. 1993; Cloning and nucleotide sequence of an extracellular alpha-amylase gene from Aeromonas hydrophila MCC-1. J Gen Microbiol 139:3215–3223 [CrossRef]
    [Google Scholar]
  3. Coronado M. J., Vargas C., Hofemeister J., Ventosa A., Nieto J. J. 2000; Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183:67–71
    [Google Scholar]
  4. Cowan D. A. 1991; Industrial enzymes. In Biotechnology, the Science and the Business pp. 311–340Edited by Moses V., Cape R. E. Chur: Harwood Academic Publishers;
    [Google Scholar]
  5. Elcock A. H., McCammon J. A. 1998; Electrostatic contribution to the stability of halophilic proteins. J Mol Biol 280:731–748 [CrossRef]
    [Google Scholar]
  6. Feller G., Lonhienne T., Deroanne C., Libioulle C., Van Beeumen J., Gerday C. 1992; Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrophile Alteromonas haloplanktis A23. J Biol Chem 267:5217–5221
    [Google Scholar]
  7. Galinski E. A. 1993; Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49:487–495 [CrossRef]
    [Google Scholar]
  8. Gray G. L., Mainzer S. E., Rey M. W., Lamsa M. H., Kindle K. L., Carmona C., Requadt C. 1986; Structural genes encoding the thermophilic α-amylases from Bacillus stearothermophilus and Bacillus licheniformis. J Bacteriol 166:635–643
    [Google Scholar]
  9. Hagenbuchle O., Bovey R., Young R. A. 1980; Tissue-specific expression of mouse-alpha-amylase genes: nucleotide sequence of isoenzyme mRNAs from pancreas and salivary gland. Cell 21:179–187 [CrossRef]
    [Google Scholar]
  10. Harold C. N., Heppel L. A. 1965; The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692
    [Google Scholar]
  11. von Heijne G. 1984; How signal sequences maintain cleavage specificity. J Mol Biol 173:243–251 [CrossRef]
    [Google Scholar]
  12. Henrissat B., Bairoch A. 1993; New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788
    [Google Scholar]
  13. Hickey D. A., Benkel B. F., Boer P. H., Genest Y., Abukashawa S., Ben-David G. 1987; Enzyme-coding genes as molecular clocks: the molecular evolution of animal alpha-amylases. J Mol Evol 26:252–256 [CrossRef]
    [Google Scholar]
  14. Inomata N., Shibata H., Okuyama E., Yamazaki T. 1995; Evolutionary relationships and sequence variation of alpha-amylase variants encoded by duplicated genes in the Amy locus of Drosophila melanogaster. Genetics 141:237–244
    [Google Scholar]
  15. James S. R., Dobson S. J., Franzmann P. D., McMeekin T. A. 1990; Halomonas meridiana, a new species of extremely halotolerant bacteria isolated from Antarctic saline lakes. Syst Appl Microbiol 13:270–278 [CrossRef]
    [Google Scholar]
  16. Janecek S. 1994; Sequence similarities and evolutionary relationships of microbial, plant and animal alpha-amylases. Eur J Biochem 224:519–524 [CrossRef]
    [Google Scholar]
  17. Kamekura M. 1986; Production and function of enzymes of eubacterial halophiles. FEMS Microbiol Rev 39:145–150 [CrossRef]
    [Google Scholar]
  18. Kamekura M., Seno Y., Holmes M. L., Dyall-Smith M. L. 1992; Molecular cloning of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaea strain (172P1) and expression of the gene in Haloferax volcanii. J Bacteriol 174:736–742
    [Google Scholar]
  19. Kessler B., de Lorenzo V., Timmis K. N. 1992; A general system to integrate lacZ fusion into the chromosome of gram negative bacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 233:293–301 [CrossRef]
    [Google Scholar]
  20. Khire J. M. 1994; Production of moderately halophilic amylase by newly isolated Micrococcus sp. 4 from a salt pan. Lett Appl Microbiol 19:210–212 [CrossRef]
    [Google Scholar]
  21. Knauf V. C., Nester E. W. 1982; Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8:45–54 [CrossRef]
    [Google Scholar]
  22. Kobayashi T., Kamekura M., Kanlayakrit W., Onishi H. 1986; Production, purification and characterization of an amylase of the moderate halophile, Micrococcus varians subsp. halophilus. Microbios 46:165–170
    [Google Scholar]
  23. Kobayashi T., Kanai H., Aono R., Horikoshi K., Kudo T. 1994; Cloning, expression, and nucleotide sequence of the α-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol 176:5131–5134
    [Google Scholar]
  24. Kunte H. J., Galinski E. A. 1995; Transposon mutagenesis in halophilic eubacteria: conjugal transfer and insertion of transposons Tn5 and Tn1732 in Halomonas elongata. FEMS Microbiol Lett 128:293–299 [CrossRef]
    [Google Scholar]
  25. Kushner D. J., Kamekura M. 1988; Physiology of halophilic eubacteria. In Halophilic Bacteria pp. 109–138Edited by Rodrı́guez-Valera F. Boca Raton: CRC Press;
    [Google Scholar]
  26. Labes M., Pühler A., Simon R. 1990; A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene 89:37–46 [CrossRef]
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685
    [Google Scholar]
  28. Lanyi J. K. 1974; Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290
    [Google Scholar]
  29. Machius M., Wiegand G., Huber R. 1995; Crystal structure of calcium-depleted Bacillus licheniformis α-amylase at 2·2 Å resolution. J Mol Biol 246:545–559 [CrossRef]
    [Google Scholar]
  30. Matsuura Y., Kusunoki M., Harada W., Kakudo M. 1984; Structure and possible catalytic residues of Taka-amylase A. J Biochem 95:697–702
    [Google Scholar]
  31. Nakajima R., Imanaka T., Aiba S. 1986; Comparison of amino acid sequences of eleven different α-amylases. Appl Microbiol Biotechnol 23:355–360
    [Google Scholar]
  32. Nieto J. J., Fernández-Castillo R., Márquez M. C., Ventosa A., Quesada E., Ruiz-Berraquero F. 1989; Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 52:2385–2390
    [Google Scholar]
  33. Onishi H. 1972a; Halophilic amylase from a moderately halophilic Micrococcus. J Bacteriol 109:570–574
    [Google Scholar]
  34. Onishi H. 1972b; Salt response of amylase produced in media of different NaCl or KCl concentrations by a moderately halophilic Micrococcus. Can J Microbiol 18:1617–1620 [CrossRef]
    [Google Scholar]
  35. Onishi H., Hidaka O. 1978; Purification and properties of amylase produced by a moderately halophilic Acinetobacter sp. Can J Microbiol 24:1017–1023 [CrossRef]
    [Google Scholar]
  36. Onishi H., Sonoda K. 1979; Purification and some properties of an extracellular amylase from a moderate halophile, Micrococcus halobius. Appl Environ Microbiol 38:616–620
    [Google Scholar]
  37. Onishi H., Yokoi H., Kamekura M. 1991; An application of a bioreactor with flocculated cells of halophilic Micrococcus varians subsp. halophilus which preferentially adsorbed halophilic nuclease H to 5′-nucleotide production. In General and Applied Aspects of Halophilic Microorganisms pp. 341–350Edited by Rodrı́guez-Valera F. New York: Plenum;
    [Google Scholar]
  38. Petricek M., Tichy P., Kuncova M. 1992; Characterization of the alpha-amylase-encoding gene from Thermomonospora curvata. Gene 112:77–83 [CrossRef]
    [Google Scholar]
  39. Sambrook K. J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  41. Ubben D., Schmitt R. 1986; Tn1721 derivatives for transposon mutagenesis, restriction mapping and nucleotide sequence analysis. Gene 41:145–152 [CrossRef]
    [Google Scholar]
  42. Ventosa A., Nieto J. J. 1995; Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94 [CrossRef]
    [Google Scholar]
  43. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  44. Vigal T., Gil J. A., Daza A., Garcia-Gonzalez M. D., Martin J. F. 1991; Cloning, characterization and expression of an alpha-amylase gene from Streptomyces griseus IMRU3570. Mol Gen Genet 225:278–288 [CrossRef]
    [Google Scholar]
  45. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-4-861
Loading
/content/journal/micro/10.1099/00221287-146-4-861
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error