1887

Abstract

A method is described for measuring the synthesis of poly(glycerol phosphate) [poly(groP)], the major wall teichoic acid (WTA), lipoteichoic acid (LTA) and phospholipid (P-lipid), through fractionation of [2-H]glycerol ([2-H]gro)-labelled cells. When cultures of certain temperature-sensitive mutants defective in one of several genes, encoding enzymes involved in WTA synthesis, were transferred to the restrictive temperature, the synthesis of WTA underwent a specific, immediate, block, while that of LTA or P-lipid proceeded unimpeded. These results, in addition to confirming the role of genes, demonstrated, reciprocally, the specificity of the fractionation procedure used to distinguish label in WTA from that in LTA or P-lipid. Results of analysis of other, less severely affected, -deficient mutants, as well as of another genetically unrelated mutant developing comparable morphological phenotypes in non-permissive conditions, are discussed in relation to a possible mechanism generating the latter phenotype. Fractionation of 168 cells labelled either with [2-H]gro or with [1-C]-acetylglucosamine, to which tunicamycin was added at 05 μg ml (the MIC) revealed a specific and marked inhibition of poly(groP) as well as of poly(3--β-D-glucopyranosyl--acetylgalactosamine 1-phosphate), the minor WTA. However, for 60 min at least, the syntheses of PG, LTA and P-lipid were barely affected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-4-797
2000-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/4/1460797a.html?itemId=/content/journal/micro/10.1099/00221287-146-4-797&mimeType=html&fmt=ahah

References

  1. Archibald A. R. 1974; The structure, biosynthesis and function of teichoic acids. Adv Microb Physiol 11:53–95
    [Google Scholar]
  2. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. 1972; Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol 110:281–290
    [Google Scholar]
  3. Brandt C., Karamata D. 1987; Thermosensitive Bacillus subtilis mutants which lyse at the non-permissive temperature. J Gen Microbiol 133:1159–1170
    [Google Scholar]
  4. Briehl M., Pooley H. M., Karamata D. 1989; Mutants of Bacillus subtilis 168 thermosensitive for growth and wall teichoic acid synthesis. J Gen Microbiol 135:1325–1334
    [Google Scholar]
  5. Ehlert K., Höltje J.-V. 1996; Role of precursor translocation in coordination of murein and phospholipid synthesis in Escherichia coli. J Bacteriol 178:6766–6771
    [Google Scholar]
  6. Estrela A. I., Pooley H. M., de Lencastre H., Karamata D. 1991; Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid, poly(3-O-β-d-glucopyranosyl-N-acetylgalactosamine-1-phosphate); gneA, a new locus, is associated with UDP-N-acetylglucosamine 4-epimerase activity. J Gen Microbiol 137:943–950 [CrossRef]
    [Google Scholar]
  7. Fischer W., Koch H. U., Haas R. 1983; Improved preparation of lipoteichoic acids. Eur J Biochem 133:523–530 [CrossRef]
    [Google Scholar]
  8. Freymond P.-P. 1995 Génétique et biochimie des acides téichoı̈ques secondaires de Bacillus subtilis 168 et W23 PhD Thesis University of Lausanne; Switzerland:
    [Google Scholar]
  9. Henriques A. O., Glaser P., Piggot P. J., Moran C. P. Jr 1998; Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol Microbiol 28:235–247 [CrossRef]
    [Google Scholar]
  10. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature sensitive mutants of Bacillus subtilis defective in DNA synthesis. Mol Gen Genet 108:277–287
    [Google Scholar]
  11. Koch H. U., Haas R., Fischer W. 1984; The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur J Biochem 138:357–363 [CrossRef]
    [Google Scholar]
  12. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  13. Lazarevic V., Karamata D. 1995; The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16:345–355 [CrossRef]
    [Google Scholar]
  14. Levin P. A., Margolis P. S., Setlow P., Losick R., Sun D. 1992; Identification of Bacillus subtilis genes for septum placement and shape determination. J Bacteriol 174:6717–6728
    [Google Scholar]
  15. Mauck J., Glaser L. 1972; On the mode of in vivo assembly of the cell wall of Bacillus subtilis. J Biol Chem 247:1180–1187
    [Google Scholar]
  16. Mauël C., Karamata D. 1984; Prophage induction in thermosensitive DNA mutants of Bacillus subtilis. Mol Gen Genet 194:451–456 [CrossRef]
    [Google Scholar]
  17. Mauël C., Young M., Margot Ph., Karamata D. 1989; The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol Gen Genet 215:388–394 [CrossRef]
    [Google Scholar]
  18. Mauël C., Young M., Karamata D. 1991; Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J Gen Microbiol 137:929–941 [CrossRef]
    [Google Scholar]
  19. Mauël C., Young M., Monsutti-Grecescu A., Marriot S. A., Karamata D. 1994; Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140:2279–2288 [CrossRef]
    [Google Scholar]
  20. Mengin-Lecreulx D., van Heijenoort J. 1996; Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli. J Biol Chem 271:32–39 [CrossRef]
    [Google Scholar]
  21. Pavlik J. G., Rogers H. J. 1973; Selective extraction of polymers from cell walls of Gram-positive bacteria. Biochem J 131:619–621
    [Google Scholar]
  22. Pollack J. H., Neuhaus F. C. 1994; Changes in wall teichoic acid during the rod–sphere transition of Bacillus subtilis 168. J Bacteriol 176:7252–7259
    [Google Scholar]
  23. Pooley H. M., Karamata D. 1988; Can synthesis of cell wall anionic polymers in Bacillus subtilis be a target for antibiotics?. In Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function pp. 591–594Edited by Actor P., Daneo-Moore L., Higgins M. L., Salton M. R. J., Shockman G. D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Pooley H. M., Karamata D. 1994; Teichoic acid synthesis in Bacillus subtilis: genetic organisation and biological roles. In Bacterial Cell Wall pp. 187–198Edited by Ghuysen J.-M., Hakenbeck R. Amsterdam: Elsevier;
    [Google Scholar]
  25. Pooley H. M., Abellan F.-X., Karamata D. 1991; A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyl transferase, an enzyme specific for the synthesis of the major wall teichoic acid. J Gen Microbiol 137:921–928 [CrossRef]
    [Google Scholar]
  26. Pooley H. M., Abellan F.-X., Karamata D. 1992; CDP-glycerol:poly(glycerolphosphate)phosphoglycerotransferase, involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC). J Bacteriol 174:646–649
    [Google Scholar]
  27. Pooley H. M., Abellan F.-X., Karamata D. 1993; Wall teichoic acid, peptidoglycan synthesis and morphogenesis in Bacillus subtilis. In Bacterial Growth and Lysis: Metabolism and Structure of the Bacterial Sacculus pp. 385–392Edited by de Pedro M. A., Höltje J.-V., Löffelhardt W. New York: Plenum Publishing;
    [Google Scholar]
  28. Rogers H. J., Taylor C. 1978; Autolysins and shape change in rodA mutants of Bacillus subtilis. J Bacteriol 135:1032–1042
    [Google Scholar]
  29. Rogers H. J., McConnell M., Burdett I. D. J. 1970; The isolation and characterization of mutants of Bacillus subtilis and Bacillus licheniformis with disturbed morphology and cell division. J Gen Microbiol 61:155–171 [CrossRef]
    [Google Scholar]
  30. Rogers H. J., McConnell M., Hughes R. C. 1971; The chemistry of the cell walls of rod mutants of Bacillus subtilis. J Gen Microbiol 66:297–308 [CrossRef]
    [Google Scholar]
  31. Sargent M. G. 1973; Membrane synthesis in synchronous cultures of Bacillus subtilis 168. J Bacteriol 116:397–409
    [Google Scholar]
  32. Soldo B., Lazarevic V., Margot Ph., Karamata D. 1993; Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol 139:3185–3195 [CrossRef]
    [Google Scholar]
  33. Takatsuki A., Shimizu K.-I., Tamura G. 1972; Effect of tunicamycin on microorganisms: morphological changes and degradation of RNA and DNA induced by tunicamycin. J Antibiotics 25:75–85 [CrossRef]
    [Google Scholar]
  34. Varley A. W., Stewart G. C. 1992; The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (MinCD) and cell shape (MreBCD) determinants. J Bacteriol 174:6729–6742
    [Google Scholar]
  35. Ward J. B., Wyke A. W., Curtis C. A. M. 1980; The effect of tunicamycin on wall synthesis in bacilli. Biochem Soc Trans 8:164–166
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-4-797
Loading
/content/journal/micro/10.1099/00221287-146-4-797
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error