1887

Abstract

Extracts from benzyl-alcohol-grown DSM 1069 showed NAD(P)-independent, ,-dimethyl-4-nitrosoaniline (NDMA)-dependent alcohol dehydrogenase activity. The enzyme exhibiting this activity was purified to homogeneity and characterized. It appears to be a typical nicotinoprotein as it contains tightly bound NADH acting as cofactor instead of coenzyme. Other characteristics indicate that it is highly similar to the known nicotinoprotein alcohol dehydrogenase (np-ADH) from : it is a homotetramer of 150 kDa; N-terminal amino acid sequencing (22 residues) showed that 77% of these amino acids are identical in the two enzymes; it has optimal activity at pH 70; it lacks NAD(P)H-dependent aldehyde reductase activity; it catalyses the oxidation of a broad range of (preferably) primary and secondary alcohols, either aliphatic or aromatic, and formaldehyde, with the concomitant reduction of the artificial electron acceptor NDMA. NDMA could be replaced by an aldehyde, but not formaldehyde, the substrate specificity of the enzyme for the aldehydes reflecting that for the corresponding alcohols. The latter also applied to the low aldehyde dismutase activity displayed by the enzyme. From this, together with the results of the induction studies, it is concluded that np-ADH functions as the main alcohol-oxidizing enzyme in the dissimilation of many, but not all, alcohols by and may also catalyse coenzyme-independent interconversion of alcohols and aldehydes under certain circumstances. It is anticipated that the enzyme may be of even wider significance since structural data indicate that np-ADH is also present in other (nocardioform) actinomycetes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-4-775
2000-04-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/4/1460775a.html?itemId=/content/journal/micro/10.1099/00221287-146-4-775&mimeType=html&fmt=ahah

References

  1. Ashraf W., Murrell J. C.. 1990; Purification and characterization of a NAD+-dependent secondary alcohol dehydrogenase from propane-grown Rhodococcus rhodochrous PNKb1. Arch Microbiol153:163–168[CrossRef]
    [Google Scholar]
  2. Ashraf W., Murrell J. C.. 1992; Genetic, biochemical and immunological evidence for the involvement of two alcohol dehydrogenases in the metabolism of propane by Rhodococcus rhodochrous PNKb1. Arch Microbiol157:488–492
    [Google Scholar]
  3. Bell K. S., Philp J. C., Aw D. W. J., Christofi N.. 1998; The genus Rhodococcus. J Appl Microbiol85:195–210[CrossRef]
    [Google Scholar]
  4. Bystrykh L. V., Vonck J., van Bruggen E. F. J., van Beeumen J., Samyn B., Govorukhina N. I., Arfman N., Duine J. A., Dijkhuizen L.. 1993a; Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol:N,N′-dimethyl-4-nitrosoaniline oxidoreductases from the Gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J Bacteriol175:1814–1822
    [Google Scholar]
  5. Bystrykh L. V., Govorukhina N. I., van Ophem P. W., Hektor H. J., Dijkhuizen L., Duine J. A.. 1993b; Formaldehyde dismutase activities in Gram-positive bacteria oxidizing methanol. J Gen Microbiol139:1979–1985[CrossRef]
    [Google Scholar]
  6. Bystrykh L. V., Govorukhina N. I., Dijkhuizen L., Duine J. A.. 1997; Tetrazolium dye-linked alcohol dehydrogenase of the methylotrophic actinomycete Amycolatopsis methanolica is a three-component complex. Eur J Biochem247:280–287[CrossRef]
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J..38 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  8. Cornish-Bowden A.. 1995; Fundamentals of Enzyme Kinetics, 2nd edn. London: Portland Press;
    [Google Scholar]
  9. Duine J. A., Frank J., Berkhout M. P. J.. 1984; NAD-dependent, PQQ-containing methanol dehydrogenase: a bacterial dehydrogenase in a multienzyme complex. FEBS Lett168:217–221[CrossRef]
    [Google Scholar]
  10. Dunn M. F., Bernard S. A.. 1971; Rapid kinetic evidence for adduct formation between the substrate p-nitroso-N,N-dimethylaniline and reduced nicotinamide-adenine dinucleotide during enzymic reduction. Biochemistry10:4569–4575[CrossRef]
    [Google Scholar]
  11. Eggeling L., Sahm H.. 1984; An unusual formaldehyde oxidizing system in Rhodococcus erythropolis grown on compounds containing methyl groups. FEMS Microbiol Lett25:253–257[CrossRef]
    [Google Scholar]
  12. Eggeling L., Sahm H.. 1985; The formaldehyde dehydrogenase of Rhodococcus erythropolis, a trimeric enzyme requiring a cofactor and active with alcohols. Eur J Biochem150:129–134[CrossRef]
    [Google Scholar]
  13. Eklund H., Müller-Wille P., Horjales E.. 1990; Comparison of three classes of human liver alcohol dehydrogenase. Emphasis on different substrate binding pockets. Eur J Biochem193:303–310[CrossRef]
    [Google Scholar]
  14. Finnerty W. R.. 1992; The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol46:193–218[CrossRef]
    [Google Scholar]
  15. Geerlof A., van Tol J. B. A., Jongejan J. A., Duine J. A.. 1994; Enantioselective conversion of the racemic C3-alcohol synthons, glycidol (2,3-epoxy-1-propanol), and solketal (2,2-dimethyl-4-(hydroxymethyl)-1,3-dioxolane) by quinohaemoprotein alcohol dehydrogenases and bacteria containing such enzymes. Biosci Biotechnol Biochem58:1028–1036[CrossRef]
    [Google Scholar]
  16. Hektor H. J.. 1997; Physiology and biochemistry of primary alcohol oxidation in the Gram-positive bacteria Amycolatopsis methanolica and Bacillus methanolicus PhD thesis Groningen State University;
    [Google Scholar]
  17. Hektor H. J., Dijkhuizen L.. 1996; Mutational analysis of primary alcohol metabolism in the methylotrophic actinomycete Amycolatopsis methanolica. FEMS Microbiol Lett144:73–79[CrossRef]
    [Google Scholar]
  18. Jaeger E.. 1988; Purification of coniferyl alcohol dehydrogenase from Rhodococcus erythropolis. Methods Enzymol161:301–306
    [Google Scholar]
  19. Jaeger E., Eggeling L., Sahm H.. 1981; Partial purification and characterization of a coniferyl alcohol dehydrogenase from Rhodococcus erythropolis. Curr Microbiol6:333–336[CrossRef]
    [Google Scholar]
  20. Kersten P. J., Stephens S. K., Kirk T. K.. 1990; Glyoxal oxidase and the extracellular peroxidases of Phanerochaete chrysosporium. In Biotechnology in Pulp and Paper Manufacture pp.457–463Edited by Kirk T. K., Chang H.-M.. Stoneham, MA: Butterworth-Heinemann;
    [Google Scholar]
  21. Krier F., Kreit J., Millière J. B.. 1998; Characterization of partially purified alcohol dehydrogenase from Rhodococcus sp. strain GK1. Lett Appl Microbiol26:283–287[CrossRef]
    [Google Scholar]
  22. Kulakova A. N., Larkin M. J., Kulakov L. A.. 1997; The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology143:109–115[CrossRef]
    [Google Scholar]
  23. Laemmli U. K.. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  24. Ludwig B., Akundi A., Kendall K.. 1995; A long-chain secondary alcohol dehydrogenase from Rhodococcus erythropolis ATCC 4277. Appl Environ Microbiol61:3729–3733
    [Google Scholar]
  25. Misset-Smits M., van Ophem P. W., Sakuda S., Duine J. A.. 1997; Mycothiol, 1-O-(2′-[N-acetyl-l-cysteinyl]amino-2′-deoxy-α-d-glucopyranosyl)-d-myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase. FEBS Lett409:221–222[CrossRef]
    [Google Scholar]
  26. Nagy I., Verheijen S., de Schrijver A., van Damme J., Proost P., Schoofs G., Vanderleyden J., de Mot R.. 1995; Characterization of the Rhodococcus sp. NI86/21 gene encoding alcohol:N,N′-dimethyl-4-nitrosoaniline oxidoreductase inducible by atrazine and thiocarbamate herbicides. Arch Microbiol163:439–446[CrossRef]
    [Google Scholar]
  27. van Ophem P. W., Duine J. A.. 1994; NAD- and co-substrate (GSH or factor)-dependent formaldehyde dehydrogenases from methylotrophic microorganisms act as a class III alcohol dehydrogenase. FEMS Microbiol Lett116:87–94[CrossRef]
    [Google Scholar]
  28. van Ophem P. W., van Beeumen J., Duine J. A.. 1992; NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica. Eur J Biochem206:511–518[CrossRef]
    [Google Scholar]
  29. van Ophem P. W., van Beeumen J., Duine J. A.. 1993; Nicotinoprotein (NAD(P)-containing) alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur J Biochem212:819–826[CrossRef]
    [Google Scholar]
  30. Peters J., Zelinski T., Kula M.-R.. 1992; Studies on the distribution and regulation of microbial keto ester reductases. Appl Microbiol Biotechnol38:334–340
    [Google Scholar]
  31. Peters J., Zelinski T., Minuth T., Kula M.-R.. 1993; Synthetic applications of the carbonyl-reductases isolated from Candida parapsilosis and Rhodococcus erythropolis. Tetrahedron Asymm4:1683–1692[CrossRef]
    [Google Scholar]
  32. Piersma S. R.. 1998; Structure and catalytic mechanism of nicotinoprotein alcohol dehydrogenases from Amycolatopsis methanolica. PhD Thesis Delft University of Technology;
  33. Piersma S. R., Visser A. J. W. G., de Vries S., Duine J. A.. 1998; Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase. Biochemistry37:3068–3077[CrossRef]
    [Google Scholar]
  34. de Schrijver A., Nagy I., Schoofs G., Proost P., Vanderleyden J., van Pée K.-H., de Mot R.. 1997; Thiocarbamate herbicide-inducible nonheme haloperoxidase of Rhodococcus erythropolis NI86/21. Appl Environ Microbiol63:1911–1916
    [Google Scholar]
  35. Smith P. K., Krohn R. I., Hermanson G. T..7 other authors 1985; Measurement of protein using bicinchoninic acid. Anal Biochem150:76–85[CrossRef]
    [Google Scholar]
  36. Warhurst A. M., Fewson C. A.. 1994; Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol14:29–73[CrossRef]
    [Google Scholar]
  37. Zelinski T., Peters J., Kula M.-R.. 1994; Purification and characterization of a novel carbonyl reductase isolated from Rhodococcus erythropolis. J Biotechnol33:283–292[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-4-775
Loading
/content/journal/micro/10.1099/00221287-146-4-775
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error