1887

Abstract

The practice of exposing liquid cultures of the white-rot fungus to a pure oxygen atmosphere under conditions of nutrient starvation has been widely adopted to induce lignin peroxidase (LiP) synthesis. Transmission electron microscopy was used to examine hyphal cells of carbon-limited cultures that had been exposed to an atmosphere of pure oxygen, and revealed evidence of a major loss in organization of cellular ultrastructure, which may be attributed to oxygen toxicity. Under some conditions (continuous agitation in air with cellulose as the carbon source) cultures will produce LiP without needing to be exposed to a pure oxygen atmosphere. A similar major loss of cellular ultrastructure was found in hyphal cells from such cultures upon examination. Investigation of the levels of HO, catalase and carbonyl content of intracellular proteins suggests that the latter cultures developed a hyperoxidant state because the rate of supply of carbon from cellulose hydrolysis was insufficient for oxygen homeostasis. The association of LiP with these cultures and with those exposed to an atmosphere of pure oxygen infers that LiP may be triggered in response to oxidant stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-759
2000-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460759a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-759&mimeType=html&fmt=ahah

References

  1. Asther M., Corrieu G., Drapon R., Odier E. 1987; Effect of Tween 80 and oleic acid on ligninase production by Phanerochaete chrysosporium INA-12. Enzyme Microb Technol 9:245–249 [CrossRef]
    [Google Scholar]
  2. Aust S. D. 1990; Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb Ecol 20:197–209 [CrossRef]
    [Google Scholar]
  3. Bar-Lev S. S., Kirk T. K. 1981; Effects of molecular oxygen on lignin degradation. Biochim Biophys Res Commun 99:373–378 [CrossRef]
    [Google Scholar]
  4. Bietti M., Baciocchi E., Steenken S. 1998; Lifetime, reduction potential and base-induced fragmentation of the veratryl alcohol radical cation in aqueous solution. Pulse radiolysis studies on a ligninase ‘mediator’. J Phys Chem A 102:7337–7342 [CrossRef]
    [Google Scholar]
  5. Bonnarme P., Delattre M., Drouet H., Corrieu G., Asther M. 1993; Toward a control of lignin and manganese peroxidases hypersecretion by Phanerochaete chrysosporium in agitated vessels: evidence of the superiority of pneumatic bioreactors on mechanically agitated bioreactors. Biotechnol Bioeng 41:440–450 [CrossRef]
    [Google Scholar]
  6. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  7. Buchala A. J., Leisola M. S. A. 1987; Structure of the β-d-glucan secreted by Phanerochaete chrysosporium in continuous culture. Carbohydr Res 165:146–149 [CrossRef]
    [Google Scholar]
  8. Candeias L. P., Harvey P. J. 1995; Lifetime and reactivity of the veratryl alcohol radical cation. J Biol Chem 270:16745–16748 [CrossRef]
    [Google Scholar]
  9. Chance B., Sies H., Boveris A. 1979; Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605
    [Google Scholar]
  10. Dass S. B., Reddy C. A. 1990; Characterisation of extracellular peroxidases produced by acetate-buffered cultures of the lignin-degrading basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 69:221–224 [CrossRef]
    [Google Scholar]
  11. Dosoretz C. G., Chen A. H.-C., Grethlein H. E. 1990; Effect of oxygenation conditions on submerged cultures of Phanerochaete chrysosporium . Appl Microbiol Biotechnol 34:131–137
    [Google Scholar]
  12. Faison B. D., Kirk T. K. 1985; Factors involved in the regulation of ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 49:299–304
    [Google Scholar]
  13. Gerin P. A., Bellon-Fontaine M.-N., Asther M., Rouxhet P. G. 1993; Surface properties of the conidiospores of Phanerochaete chrysosporium and their relevance to pellet formation. J Bacteriol 175:5135–5144
    [Google Scholar]
  14. Gold M. H., Alic M. 1993; Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622
    [Google Scholar]
  15. Goodwin D. C., Aust S. D., Grover T. A. 1995; Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalysed oxidation. Biochemistry 34:5060–5065 [CrossRef]
    [Google Scholar]
  16. Hammel K. E., Moen M. A. 1991; Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb Technol 13:15–18 [CrossRef]
    [Google Scholar]
  17. Hansberg W., Aguirre J. 1990; Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol 142:201–221 [CrossRef]
    [Google Scholar]
  18. Harvey P. J., Schoemaker H. E., Palmer J. M. 1986; Veratryl alcohol as a mediator and the role of radical cation in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett 195:242–246 [CrossRef]
    [Google Scholar]
  19. Hassan H. M., Fridovitch I. 1978; Regulation of the synthesis of catalase and peroxidase in E. coli. J Biol Chem 253:6445–6450
    [Google Scholar]
  20. Holroyd M. L., Caunt P. 1997; Field-scale use of white rot fungi for soil remediation in Finland. In Bioremediation: Principles and Practice III pp. 245–257Edited by Sikdar S. K., Irvine R. L. Lancaster, PA: Technomic Publishing;
    [Google Scholar]
  21. Jager A., Croan S., Kirk T. K. 1985; Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50:1274–1278
    [Google Scholar]
  22. Jeffries T. W., Choi S., Kirk T. K. 1981; Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol 42:290–296
    [Google Scholar]
  23. Kern H. W. 1989; Improvement in the production of extracellular lignin peroxidases by Phanerochaete chrysosporium: effect of solid manganese(IV)oxide. Appl Microbiol Biotechnol 32:223–234 [CrossRef]
    [Google Scholar]
  24. Kersten P. J., Tien M., Kalayanaraman B., Kirk T. K. 1985; The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260:2609–2612
    [Google Scholar]
  25. Kirk T. K., Schultz E., Connors W. J., Lorenz L. F., Zeikus J. G. 1978; Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285 [CrossRef]
    [Google Scholar]
  26. Lamar R. T., Glaser J. A., Kirk T. K. 1990; Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium: mineralization, volatilization and depletion of PCP. Soil Biol Biochem 22:433–440 [CrossRef]
    [Google Scholar]
  27. Leisola M. S. A., Fiechter A. 1985; Ligninase production in agitated condition by Phanerochaete chrysosporium. FEMS Microbiol Lett 29:33–36 [CrossRef]
    [Google Scholar]
  28. Leisola M. S. A., Ulmer D., Fiechter A. 1983; Problem of oxygen transfer during degradation of lignin by Phanerochaete chrysosporium. Eur J Microbiol Biotechnol 17:113–116
    [Google Scholar]
  29. Leisola M. S. A., Ulmer D., Fiechter A. 1984; Factors affecting lignin degradation in lignocellulose by Phanerochaete chrysosporium . Arch Microbiol 137:171–175 [CrossRef]
    [Google Scholar]
  30. Leisola M. S. A., Thanei-Wyss U., Fiechter A. 1985; Strategies for production of high ligninase activities by Phanerochaete chrysosporium. J Biotechnol 3:97–107 [CrossRef]
    [Google Scholar]
  31. McCord J. M., Fridovitch I. 1969; Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055
    [Google Scholar]
  32. Markham P. 1995; Organelles of filamentous fungi. In The Growing Fungus pp. 75–98Edited by Gow N. A. R., Gadd G. M. London: Chapman & Hall;
    [Google Scholar]
  33. Michel F. C., Grulke E. A., Reddy C. A. 1990; Development of a stirred tank reactor system for the production of lignin peroxidases (ligninases) by Phanerochaete chrysosporium BKM-F-1767. J Ind Microbiol 5:103–112 [CrossRef]
    [Google Scholar]
  34. Michel F. C., Grulke E. A., Reddy C. A. 1992; Determination of the respiratory kinetics for mycelial pellets of Phanerochaete chrysosporium. Appl Environ Microbiol 58:1740–1745
    [Google Scholar]
  35. Reddy C. A., D’Souza T. M. 1994; Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13:137–152 [CrossRef]
    [Google Scholar]
  36. Reid I. D., Seifert K. A. 1980; Lignin degradation by Phanerochaete chrysosporium in hyperbaric oxygen. Can J Microbiol 26:1168–1171 [CrossRef]
    [Google Scholar]
  37. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 [CrossRef]
    [Google Scholar]
  38. Reznick A. Z., Packer L. 1993; Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:346–357
    [Google Scholar]
  39. Tien M., Kirk T. K. 1984; Lignin-degrading enzyme from Phanerochaete chrysosporium. Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284 [CrossRef]
    [Google Scholar]
  40. Tonon F., Odier E. 1988; Influence of veratryl alcohol and hydrogen peroxide on ligninase production by Phanerochaete chrysosporium. Appl Environ Microbiol 54:466–472
    [Google Scholar]
  41. Trinci A. P. J., Righelato R. C. 1970; Changes in constituents and ultrastructure of hyphal compartments during autolysis of glucose-starved Penicillium chrysogenum. J Gen Microbiol 60:239–249 [CrossRef]
    [Google Scholar]
  42. Trinci A. P. J., Thurston C. F. 1976; Transition to the non-growing state in eukaryotic micro-organisms. Symp Soc Gen Microbiol 26:55–80
    [Google Scholar]
  43. Wolff S. P., Garner A., Dean R. T. 1986; Free radicals, lipids and protein degradation. Trends Biochem Sci 11:27–31 [CrossRef]
    [Google Scholar]
  44. Wood T. M., Bhat K. M. 1988; Methods for measuring cellulase activities. Methods Enzymol 160:87–117
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-759
Loading
/content/journal/micro/10.1099/00221287-146-3-759
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error