1887

Abstract

Bacteria naturally associated with the symbiont subsp. were isolated from the entomopathogenic nematode . Bacterial isolates distinct from subsp. were obtained from 33% of the samples. Fourteen bacterial isolates, from nematodes collected from three different Caribbean islands, were characterized by conventional phenotypic tests, restriction fragment length polymorphism and sequence analyses of PCR-amplified 16S rRNA genes (16S rDNAs). Isolates were grouped into three genotypes, each one being associated with one Caribbean island. Phenotypic characteristics and 16S rDNA analysis showed that the -associated bacteria were closely related to for the group from Guadeloupe, and to for the two groups from the Dominican Republic and Puerto Rico. No pathogenicity of the spp. to the insects and (Lepidoptera) was detected. Since spp. are considered as human opportunist pathogens, the mass production of entomopathogenic nematodes for biological control requires strict vigilance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-709
2000-03-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460709a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-709&mimeType=html&fmt=ahah

References

  1. Aguillera M. M., Smart G. C. Jr. 1993; Development, reproduction, and pathogenicity of Steinernema scapterisci in monoxenic culture with different species of bacteria. J Invertebr Pathol62:289–294[CrossRef]
    [Google Scholar]
  2. Aguillera M. M., Hodge N. C., Stall R. E., Smart G. C. Jr. 1993; Bacterial symbionts of Steinernema scapterisci. J Invertebr Pathol62:68–72[CrossRef]
    [Google Scholar]
  3. Akhurst R. J.. 1980; Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol121:303–309
    [Google Scholar]
  4. Akhurst R. J.. 1982; Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol128:3061–3065
    [Google Scholar]
  5. Akhurst R. J., Boemare N. E.. 1988; A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. J Gen Microbiol134:1835–1845
    [Google Scholar]
  6. Akhurst R. J., Mourant R. G., Baud L., Boemare N. E.. 1996; Phenotypic and DNA relatedness study between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). Int J Syst Bacteriol46:1034–1041[CrossRef]
    [Google Scholar]
  7. Alnor D., Frimodt-Moller N., Espersen F., Frederiksen W.. 1994; Infections with the unusual human pathogens Agrobacterium species and Ochrobactrum anthropi. Clin Infect Dis18:914–920[CrossRef]
    [Google Scholar]
  8. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  9. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M.. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol45:493–496
    [Google Scholar]
  10. Boemare N. E.. 1983; Recherches sur les complexes némato-bactériens entomopathogènes: étude bactériologique, gnotobiologique et physiopathologique du mode d’action parasitaire de Steinernema carpocapsae Weiser (Rhabitida: Steinernematidae) Thèse d’Etat (PhD thesis) Université Montpellier II;
    [Google Scholar]
  11. Boemare N. E., Akhurst R. J.. 1988; Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J Gen Microbiol134:751–761
    [Google Scholar]
  12. Boemare N. E., Akhurst R. J., Mourant R. G.. 1993; DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol43:249–255[CrossRef]
    [Google Scholar]
  13. Boemare N. E., Laumond C., Mauléon H.. 1996; The nematode–bacterium complexes: biology, life cycle, and vertebrate safety. Biocontrol Sci Technol6:333–345[CrossRef]
    [Google Scholar]
  14. Boemare N. E., Givaudan A., Brehélin M., Laumond C.. 1997; Symbiosis and pathogenicity of nematode–bacterium complexes. Symbiosis22:21–45
    [Google Scholar]
  15. Bonifassi E., Fischer-Le Saux M., Boemare N., Lanois A., Laumond C., Smart G.. 1999; Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: a model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. J Invertebr Pathol74:164–172[CrossRef]
    [Google Scholar]
  16. Brunel B., Givaudan A., Lanois A., Akhurst R. J., Boemare N.. 1997; Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol63:574–580
    [Google Scholar]
  17. Bucher G. E.. 1960; Potential bacterial pathogens of insects and their characteristics. J Insect Pathol2:172–195
    [Google Scholar]
  18. Cerny G.. 1976; Method for distinction of Gram positive from Gram negative bacteria. J Appl Microbiol3:223–225[CrossRef]
    [Google Scholar]
  19. Chester B., Cooper L. H.. 1979; Achromobacter species (CDC group Vd): morphological and biochemical characterization. J Clin Microbiol9:425–436
    [Google Scholar]
  20. Christenson J. C., Pavia A. T., Seskin K., Brockmeyer D., Korgenski E. K., Jenkins E., Pierce J., Daly J. A.. 1997; Meningitis due to Ochrobactrum anthropi: an emerging nosocomial pathogen. A report of 3 cases. Pediatr Neurosurg27:218–221[CrossRef]
    [Google Scholar]
  21. Cieslak T. J., Drabick C. J., Robb M. L.. 1996; Pyogenic infections due to Ochrobactrum anthropi. Clin Infect Dis22:845–847[CrossRef]
    [Google Scholar]
  22. Constant P., Marchay L., Fischer-Le Saux M., Briand-Panoma S., Mauléon H.. 1998; Natural occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Guadeloupe islands. Fundam Appl Nematol21:667–672
    [Google Scholar]
  23. Farmer J. J., Jorgensen J. H., Grimont P. A. D..8 other authors 1989; Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J Clin Microbiol27:1594–1600
    [Google Scholar]
  24. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376[CrossRef]
    [Google Scholar]
  25. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791[CrossRef]
    [Google Scholar]
  26. Feng D. J., Doolittle R. F.. 1987; Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol25:351–360[CrossRef]
    [Google Scholar]
  27. Fischer-Le Saux M., Mauleon H., Constant P., Brunel B., Boemare N.. 1998; PCR-ribotyping of Xenorhabdus and Photorhabdus isolates from the Caribbean region in relation to the taxonomy and geographic distribution of their nematode hosts. Appl Environ Microbiol64:4246–4254
    [Google Scholar]
  28. Fischer-Le Saux M., Viallard V., Brunel B., Normand P., Boemare N.. 1999; Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol49:1645–1656[CrossRef]
    [Google Scholar]
  29. Galtier N., Gouy M., Gautier C.. 1996; Sea View and phylo win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci12:543–548
    [Google Scholar]
  30. Gaugler R., Kaya H. K.. 1990; Entomopathogenic Nematodes in Biological Control Boca Raton, FL: CRC Press;
    [Google Scholar]
  31. Gerritsen L. J. M., Van der Wolf J. M., Van Vuurde J. W. L., Ehlers R.-U., Krasomil-Osterfeld K. C., Smits P. H.. 1995; Polyclonal antisera to distinguish strains and form variants of Photorhabdus (Xenorhabdus) luminescens. Appl Environ Microbiol61:284–289
    [Google Scholar]
  32. Gill M. V., Ly H., Mueenuddin M., Schoch P. E., Cunha B. A.. 1997; Intravenous line infection due to Ochrobactrum anthropi (CDC Group Vd) in a normal host. Heart Lung26:335–336[CrossRef]
    [Google Scholar]
  33. Holmes B., Popoff M., Kiredjian M., Kersters K.. 1988; Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as Group Vd. Int J Syst Bacteriol38:406–416[CrossRef]
    [Google Scholar]
  34. Holt J. G., Krieg N. R., Sneath P. A., Staley J. T., Williams S. T.. 1994; Bergey’s Manual of Determinative Bacteriology, 9th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  35. Hu K., Webster J. M.. 1998; In vitro and in vivo characterization of a small-colony variant of the primary form of Photorhabdus luminescens MD (Enterobacteriaceae). Appl Environ Microbiol64:3214–3219
    [Google Scholar]
  36. Jackson T. J., Wang H., Nugent M. J., Griffin C. T., Burnell A. M., Dowds B. C. A.. 1995; Isolation of insect pathogenic bacteria, Providencia rettgeri, from Heterorhabditis spp. J Appl Bacteriol78:237–244[CrossRef]
    [Google Scholar]
  37. Kern W. V., Oethinger M., Kaufhold A., Rozdzinski E., Marre R.. 1993; Ochrobactrum anthropi bacteremia: report of four cases and short review. Infection21:306–310[CrossRef]
    [Google Scholar]
  38. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120[CrossRef]
    [Google Scholar]
  39. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32[CrossRef]
    [Google Scholar]
  40. Kodaka H., Armfield A. Y., Lombard G. L., Dowell V. R.. 1982; Practical procedure for demonstrating bacterial flagella. J Clin Microbiol16:948–952
    [Google Scholar]
  41. Larsen N., Overbeek R., Harrison S., Searles D., Garrity G.. 1997; Bergey’s Revision of the RDP Tree. Inhttp://www.cme.msu.edu/Bergeys/btcomments/bt9.pdf pp.49–50Edited by Garrity J., Harrison S.. Baltimore: Williams & Wilkins;
  42. Lysenko O., Weiser J.. 1974; Bacteria associated with the nematode Neoaplectana carpocapsae and the pathogenicity of this complex for Galleria mellonella larvae. J Invertebr Pathol24:332–336[CrossRef]
    [Google Scholar]
  43. Moller L. V. M., Arends J. P., Harmsen H. J. M., Talens A., Terpstra P., Slooff M. J. H.. 1999; Ochrobactrum intermedium infection after liver transplantation. J Clin Microbiol37:241–244
    [Google Scholar]
  44. Poinar G. O. Jr, Thomas G. M.. 1966; Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteriaceae: Eubacteriales) in the development of the nematode DD-136 (Neoaplectana sp., Steinernematidae). Parasitology56:385–390[CrossRef]
    [Google Scholar]
  45. Poinar G. O. Jr, Thomas G. M., Presser S. B., Hardy J. L.. 1982; Inoculation of entomogenous nematodes, Neoaplectana and Heterorhabditis and their associated bacteria, Xenorhabdus spp. into chicks and mice. Environ Entomol11:137–138[CrossRef]
    [Google Scholar]
  46. Romero C., Gamazo C., Pardo M., Lopez-Goni I.. 1995; Specific detection of Brucella DNA by PCR. J Clin Microbiol33:615–617
    [Google Scholar]
  47. Ryu E.. 1937; A simple method of staining bacterial flagella. Kitasato Arch Exp Med14:218–219
    [Google Scholar]
  48. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  49. Schafer A., Konrad R., Kuhnigk T., Kampfer P., Hertel H., Konig H.. 1996; Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol80:471–478[CrossRef]
    [Google Scholar]
  50. Thomas G. M., Poinar G. O. Jr. 1979; Xenorhabdus gen. nov., a genus of entomopathogenic nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol29:352–360[CrossRef]
    [Google Scholar]
  51. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal-x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882[CrossRef]
    [Google Scholar]
  52. Velasco J., Romero C., Lopez-Goni I., Leiva J., Diaz R., Moriyon I.. 1998; Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int J Syst Bacteriol48:759–768[CrossRef]
    [Google Scholar]
  53. Wiesburg G. W., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703
    [Google Scholar]
  54. Wouts W. M.. 1990; The primary form of Xenorhabdus species (Enterobacteriaceae, Eubacteriales) may consist of more than one bacterial species. Nematologica36:313–318[CrossRef]
    [Google Scholar]
  55. Yanagi M., Yamasato K.. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett107:115–120[CrossRef]
    [Google Scholar]
  56. Yu W. L., Lin C. W., Wang D. Y.. 1998; Clinical and microbiological characteristics of Ochrobactrum anthropi bacteremia. J Formos Med Assoc97:106–112
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-709
Loading
/content/journal/micro/10.1099/00221287-146-3-709
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error