1887

Abstract

To identify the putative lactate transporter protein of , plasma membranes from cells grown either on lactic acid (presence of lactate proton symport) or glucose (absence of lactate proton symport) were incubated with –[U–C]lactic acid and the membrane proteins were then separated by SDS-PAGE. A well-defined peak of radioactivity occurred in the lane of the gel containing plasma membrane proteins from lactic-acid-grown cells but not from glucose-grown cells. Binding was inhibited by unlabelled pyruvate and lactate, whereas succinate and citrate were not inhibitory. The monocarboxylate transporter inhibitor of animal cells, 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate, competitively inhibited the lactate proton symport in the whole yeast and also inhibited lactate binding to proteins of isolated plasma membranes. The polypeptide pattern of plasma membranes from lactic-acid-grown cells revealed a 43 kDa polypeptide associated with the peak of labelled lactate. Altogether the results suggest that this polypeptide is either the lactate transporter or a component of it.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-695
2000-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460695a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-695&mimeType=html&fmt=ahah

References

  1. Casal, M., Paiva, S., Andrade, R. P., Gancedo, C. & Leão, C. ( 1999; ). The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181, 2620-2623.
    [Google Scholar]
  2. Cássio, F. & Leão, C. ( 1991; ). Low and high-affinity transport systems for citric acid in the yeast Candida utilis. Appl Environ Microbiol 57, 3623-3628.
    [Google Scholar]
  3. Cássio, F. & Leão, C. ( 1993; ). A comparative study on the transport of l(−)malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease. Yeast 9, 743-752.[CrossRef]
    [Google Scholar]
  4. Cássio, F., Leão, C. & Van Uden, N. ( 1987; ). Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 53, 509-513.
    [Google Scholar]
  5. Cássio, F., Cõrte-Real, M. & Leão, C. ( 1993; ). Quantitative analysis of proton movements associated with the uptake of weak-carboxylic acids. The yeast Candida utilis as a model. Biochim Biophys Acta 1153, 59-66.[CrossRef]
    [Google Scholar]
  6. Fleet, G. H. ( 1990; ). Food spoilage yeasts. In Yeast Technology, pp. 124-166. Edited by J. F. T. Spencer & D. M. Spencer. Berlin: Springer.
  7. Gerós, H., Cássio, F. & Leão, C. ( 1996; ). Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Yeast 12, 1263-1272.[CrossRef]
    [Google Scholar]
  8. Juel, C. ( 1997; ). Lactate-proton cotransport in skeletal muscle. Physiol Rev 77, 321-358.
    [Google Scholar]
  9. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  10. Leão, C. & Van Uden, N. ( 1986; ). Transport of lactate and other short-chain monocarboxylates in the yeast Candida utilis. Appl Microbiol Biotechnol 23, 389-393.[CrossRef]
    [Google Scholar]
  11. McCullagh, K. J. A. & Bonen, A. ( 1995; ). l(+)-Lactate binding to a protein in rat skeletal muscle plasma membranes. Can J Appl Physiol 20, 112-124.
    [Google Scholar]
  12. Merril, C. R., Joy, J. E. & Creed, G. J. ( 1994; ). Ultrasensitive silver-based stains for protein detection. In Cell Biology – a Laboratory Handbook, pp. 281-287. Edited by J. E. Celis. San Diego: Academic Press.
  13. Pao, S. S., Paulsen, I. T. & Saier, M. H.Jr ( 1998; ). Major facilitator superfamily. Microbiol Mol Biol Rev 62, 134.
    [Google Scholar]
  14. Paulsen, I. T., Sliwinski, M. K., Nelissen, B., Goffeau, A. & Saier, M. H.Jr ( 1998; ). Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett 430, 116-125.[CrossRef]
    [Google Scholar]
  15. Poole, R. C. & Halestrap, A. P. ( 1991; ). Reversible and irreversible inhibition, by stilbene disulfonates, of lactate transport into rat erythrocytes: identification of some new high-affinity inhibitors. Biochem J 275, 855-862.
    [Google Scholar]
  16. Poole, R. C. & Halestrap, A. P. ( 1993; ). Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264, C761-C782.
    [Google Scholar]
  17. Price, N. T., Jackson, V. N. & Halestrap, A. P. ( 1998; ). Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J 329, 321-328.
    [Google Scholar]
  18. Sinskey, A. J. & Batt, C. A. ( 1987; ). Fungi as a source of protein. In Food and Beverage Mycology, pp. 435-471. Edited by L. R. Beuchat. New York: Van Nostrand Reinhold.
  19. Van Leeuwen, C. C. M., Postma, E., Van der Broek, P. J. A. & Van Steveninck, J. ( 1991; ). Proton-motive force-driven d-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. J Biol Chem 266, 12146-12151.
    [Google Scholar]
  20. Welch, S. G., Metcalfe, H. K., Monson, J. P., Cohen, R. D., Henderson, R. M. & Iles, R. A. ( 1984; ). l(+)-Lactate binding to preparations of rat hepatocyte plasma membranes. J Biol Chem 259, 15264-15271.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-695
Loading
/content/journal/micro/10.1099/00221287-146-3-695
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error