1887

Abstract

Glucose and mannose are transported in streptococci by the mannose-PTS (phosphoenolpyruvate:mannose phosphotransferase system), which consists of a cytoplasmic IIAB protein, called IIAB, and an uncharacterized membrane permease. This paper reports the characterization of the operon encoding the specific components of the mannose-PTS of . The operon was composed of four genes, , , and . These genes were transcribed from a canonical promoter () into a 36 kb polycistronic mRNA that contained a 5′-UTR (untranslated region). The predicted gene product encoded a 355 kDa protein and contained the amino acid sequences of the IIA and IIB phosphorylation sites already determined from purified \(IIAB_{L}^{Man}\) . Expression of in generated a 35 kDa protein that reacted with \(anti-IIAB_{L}^{Man}\) antibodies. The predicted ManM protein had an estimated size of 272 kDa. ManM had similarity with IIC domains of the mannose-EII family, but did not possess the signature proposed for mannose-IIC proteins from Gram-negative bacteria. From multiple alignment analyses of sequences available in current databases, the following modified IIC signature is proposed: GXG[DNH]XG[LIVM]XG[STL][LT][EQ]. The deduced product of was a hydrophobic protein with a predicted molecular mass of 334 kDa. The ManN protein contained an amino acid sequence similar to the signature sequence of the IID domains of the mannose-EII family. encoded a 137 kDa protein. This gene was also transcribed as a monocistronic mRNA from a promoter located in the intergenic region. A search of current databases revealed the presence of \(IIAB_{L}^{Man}\) , ManM, ManN and ManO orthologues in , , and . This work has elucidated the molecular structure of the mannose PTS in streptococci and enterococci, and demonstrated the presence of a putative regulatory protein (ManO) within the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-677
2000-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460677a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-677&mimeType=html&fmt=ahah

References

  1. Ausubel, F. A., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) (1990). Current Protocols in Molecular Biology. New York: Greene Publishing/Wiley-Interscience.
  2. Bouma, C. L. & Roseman, S. ( 1996; ). Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the mannose/glucose permease. J Biol Chem 271, 33468-33475.[CrossRef]
    [Google Scholar]
  3. Bourassa, S. & Vadeboncoeur, C. ( 1992; ). Expression of an inducible enzyme II fructose and activation of a cryptic enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass form of IIIMan, a component of the phosphoenolpyruvate:mannose phosphotransferase system. J Gen Microbiol 138, 769-777.[CrossRef]
    [Google Scholar]
  4. Bourassa, S., Gauthier, L., Giguère, R. & Vadeboncoeur, C. ( 1990; ). A IIIMan protein is involved in the transport of glucose, mannose and fructose by oral streptococci. Oral Microbiol Immunol 5, 288-297.
    [Google Scholar]
  5. Brochu, D., Trahan, L., Jacques, M., Lavoie, M. L., Frenette, M. & Vadeboncoeur, C. ( 1993; ). Alterations in the cellular envelope of spontaneous -defective mutants of Streptococcus salivarius. J Gen Microbiol 139, 1291-1300.[CrossRef]
    [Google Scholar]
  6. Chen, J. D. & Morrison, D. A. ( 1987; ). Cloning of Streptococcus pneumoniae DNA fragments in Escherichia coli requires vectors protected by strong transcriptional terminators. Gene 55, 179-187.[CrossRef]
    [Google Scholar]
  7. Chen, Y. Y., Hall, T. H. & Burne, R. A. ( 1998; ). Streptococcus salivarius urease expression: involvement of the phosphoenolpyruvate:sugar phosphotransferase system. FEMS Microbiol Lett 165, 117-122.[CrossRef]
    [Google Scholar]
  8. Coburn, G. A. & Mackie, G. A. ( 1999; ). Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog Nucleic Acid Res Mol Biol 62, 55-108.
    [Google Scholar]
  9. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef]
    [Google Scholar]
  10. Dillard, J. P. & Yother, J. ( 1991; ). Analysis of Streptococcus pneumoniae sequences cloned into Escherichia coli: effect of promoter strength and transcription terminators. J Bacteriol 173, 5105-5109.
    [Google Scholar]
  11. Erni, B., Zanolari, B. & Kocher, H. P. ( 1987; ). The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262, 5238-5247.
    [Google Scholar]
  12. Fang, L., Hou, Y. & Inouye, M. ( 1998; ). Role of the cold-box region in the 5′-untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J Bacteriol 180, 90-95.
    [Google Scholar]
  13. Farrow, J. A. E. & Collins, M. D. ( 1984; ). DNA base composition, DNA–DNA homology and long chain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius. J Gen Microbiol 130, 357-362.
    [Google Scholar]
  14. Gagnon, G., Vadeboncoeur, C., Gauthier, L. & Frenette, M. ( 1995; ). Regulation of ptsH and ptsI gene expression in Streptococcus salivarius ATCC 25975. Mol Microbiol 16, 1111-1121.[CrossRef]
    [Google Scholar]
  15. Gauthier, L., Bourassa, S., Brochu, D. & Vadeboncoeur, C. ( 1990; ). Control of sugar utilization in oral streptococci. Properties of phenotypically distinct 2-deoxyglucose-resistant mutants of Streptococcus salivarius. Oral Microbiol Immunol 5, 352-359.[CrossRef]
    [Google Scholar]
  16. Gutknecht, R., Lanz, R. & Erni, B. ( 1998; ). Mutational analysis of invariant arginines in the IIABMan subunit of the Escherichia coli phosphotransferase system. J Biol Chem 273, 12234-12238.[CrossRef]
    [Google Scholar]
  17. Huber, F. & Erni, B. ( 1996; ). Membrane topology of the mannose transporter of Escherichia coli K12. Eur J Biochem 239, 810-817.[CrossRef]
    [Google Scholar]
  18. Kushner, S. R. (1996). mRNA decay. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 849–860. Edited by F. C. Neidhart and others. Washington, DC: American Society for Microbiology.
  19. Jacobson, G. R. & Saraceni-Richards, C. ( 1993; ). The Escherichia coli mannitol permease as a model for transport via the bacterial phosphotransferase system. J Bioenerg Biomembr 25, 621-626.
    [Google Scholar]
  20. Jiang, W., Fang, L. & Inouye, M. ( 1996; ). The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J Bacteriol 178, 4919-4925.
    [Google Scholar]
  21. Lapointe, R., Frenette, M. & Vadeboncoeur, C. ( 1993; ). Altered expression of several genes in -defective mutants of Streptococcus salivarius demonstrated by two-dimensional gel electrophoresis of cytoplasmic proteins. Res Microbiol 144, 305-316.[CrossRef]
    [Google Scholar]
  22. Lengeler, J. W., Jahreis, K. & Wehmeier, U. F. ( 1994; ). Enzymes II of the phosphoenol pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta 1188, 1-28.[CrossRef]
    [Google Scholar]
  23. Lisser, S. & Margalit, H. ( 1993; ). Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res 21, 1507-1516.[CrossRef]
    [Google Scholar]
  24. Lortie, L. A., Gagnon, G. & Frenette, M. ( 1994; ). IS1139 from Streptococcus salivarius: identification and characterization of an insertion sequence-like element related to mobile DNA elements from Gram-negative bacteria. Plasmid 32, 1-9.[CrossRef]
    [Google Scholar]
  25. Marsh, P. & Martin, M. (1992). Oral Microbiology, 3rd edn, pp. 26–47. London: Chapman & Hall.
  26. Martin, B., Alloing, G., Boucraut, C. & Claverys, J. P. ( 1989; ). The difficulty of cloning Streptococcus pneumoniae mal and ami loci in Escherichia coli: toxicity of malX and amiA gene products. Gene 80, 227-238.[CrossRef]
    [Google Scholar]
  27. Martin-Verstraete, I., Debarbouille, M., Klier, A. & Rapoport, G. ( 1990; ). Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214, 657-671.[CrossRef]
    [Google Scholar]
  28. Moran, C. P.Jr, Lang, N., LeGrice, S. F., Lee, G., Stephens, M., Sonenshein, A. L., Pero, J. & Losick, R. ( 1982; ). Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 186, 339-346.[CrossRef]
    [Google Scholar]
  29. Nierlich, D. P. & Murakawa, G. J. ( 1996; ). The decay of bacterial messenger RNA. Prog Nucleic Acid Res Mol Biol 52, 153-216.
    [Google Scholar]
  30. Nunn, R. S., Markovic-Housley, Z., Génovésio-Taverne, J.-C., Flükiger, K., Rizkallah, P. J., Jansonius, J. N., Schirmer, T. & Erni, B. ( 1996; ). Structure of the IIA domain of the mannose transporter from Escherichia coli at 1·7 Å resolution. J Mol Biol 259, 502-511.[CrossRef]
    [Google Scholar]
  31. Pelletier, M., Frenette, M. & Vadeboncoeur, C. ( 1995; ). Distribution of proteins similar to and of the Streptococcus salivarius phosphoenolpyruvate:mannose-glucose phosphotransferase system among oral and nonoral bacteria. J Bacteriol 177, 2270-2275.
    [Google Scholar]
  32. Pelletier, M., Lortie, L.-A., Frenette, M. & Vadeboncoeur, C. ( 1998; ). The phosphoenolpyruvate:mannose phosphotransferase system of Streptococcus salivarius. Functional and biochemical characterization of and . Biochemistry 37, 1604-1612.[CrossRef]
    [Google Scholar]
  33. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543-594.
    [Google Scholar]
  34. Postma, P. W., Lengeler, J. W. & Jacobson G. R. (1996). Phosphoenolpyruvate:carbohydrate phosphotransferase systems. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1149–1174. Edited by F. C. Neidhart and others. Washington, DC: American Society for Microbiology.
  35. Reizer, J., Ramseier, T. M., Reizer, A., Charbit, A. & Saier, M. H.Jr ( 1996; ). Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology 142, 231-250.[CrossRef]
    [Google Scholar]
  36. Rhiel, E., Flukiger, K., Wehrli, C. & Erni, B. ( 1994; ). The mannose transporter of Escherichia coli K12, oligomeric structure, and function of two conserved cysteines. Biol Chem Hoppe Seyler 375, 551-559.[CrossRef]
    [Google Scholar]
  37. Saier, M. H.Jr & Reizer, J. ( 1992; ). Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol 174, 1433-1438.
    [Google Scholar]
  38. Stassi, D. L. & Lacks, S. A. ( 1982; ). Effect of strong promoters on the cloning in Escherichia coli of DNA fragments from Streptococcus pneumoniae. Gene 18, 319-328.[CrossRef]
    [Google Scholar]
  39. Szoke, P. A., Allen, T. L. & deHaseth, P. L. ( 1987; ). Promoter recognition by Escherichia coli RNA polymerase: effects of base substitutions in the −10 and −35 regions. Biochemistry 26, 6188-6194.[CrossRef]
    [Google Scholar]
  40. Vadeboncoeur, C. ( 1984; ). Structure and properties of the phosphoenolpyruvate:glucose phosphotransferase system of oral streptococci. Can J Microbiol 30, 495-502.[CrossRef]
    [Google Scholar]
  41. Vadeboncoeur, C. & Pelletier, M. ( 1997; ). The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19, 187-207.[CrossRef]
    [Google Scholar]
  42. Veyrat, A., Gosalbes, M. J. & Perez-Martinez, G. ( 1996; ). Lactobacillus curvatus has a glucose transport system homologous to the mannose family of phosphoenolpyruvate-dependent phosphotransferase systems. Microbiology 142, 3469-3477.[CrossRef]
    [Google Scholar]
  43. Waterfield, N. R., Le Page, R. W., Wilson, P. W. & Wells, J. M. ( 1995; ). The isolation of lactococcal promoters and their use in investigating bacterial luciferase synthesis in Lactococcus lactis. Gene 165, 9-15.[CrossRef]
    [Google Scholar]
  44. Wehmeier, U. F. & Lengeler, J. W. ( 1994; ). Sequence of the sor-operon for l-sorbose utilization from Klebsiella pneumoniae KAY2026. Biochim Biophys Acta 1208, 348-351.[CrossRef]
    [Google Scholar]
  45. Wouters, J. A., Sanders, J.-W., Kok, J., de Vos, W. M., Kuipers, O. P. & Abee, T. ( 1998; ). Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363. Microbiology 144, 2885-2893.[CrossRef]
    [Google Scholar]
  46. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-677
Loading
/content/journal/micro/10.1099/00221287-146-3-677
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error