1887

Abstract

expresses both Fur and Irr, proteins that mediate iron-dependent regulation of gene expression. Control of mRNA accumulation by iron was aberrant in a mutant strain, and Fur repressed an :: promoter fusion in the presence of iron. Furthermore, metal-dependent binding of Fur to an gene promoter was demonstrated in a region with no significant similarity to the Fur-binding consensus DNA element. These data suggest that the modest control of transcription by iron is mediated by Fur. However, Irr protein levels were regulated normally by iron in the strain, indicating that Fur is not required for post-transcriptional control of the gene. Accordingly, regulation of , a haem biosynthesis gene regulated by Irr, was controlled normally by iron in a strain. In addition, the gene was shown to be controlled by Fur, but not by Irr. It was concluded that Fur cannot be the only protein by which cells sense and respond to iron, and that Irr may be involved in Fur-independent signal transduction. Furthermore, iron-dependent regulation of haem biosynthesis involves both Irr and Fur.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-669
2000-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460669a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-669&mimeType=html&fmt=ahah

References

  1. Althaus, E. W., Outten, C. E., Olson, K. E., Cao, H. & O’Halloran, T. V. ( 1999; ). The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry 38, 6555-6569.
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1994). Current Protocols in Molecular Biology. New York: Wiley Interscience.
  3. Beck, C., Marty, R., Klausli, S., Hennecke, H. & Gottfert, M. ( 1997; ). Dissection of the transcription machinery for housekeeping genes of Bradyrhizobium japonicum. J Bacteriol 179, 364-369.
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef]
    [Google Scholar]
  5. Bsat, N. & Helmann, J. D. ( 1999; ). Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J Bacteriol 181, 4299-4307.
    [Google Scholar]
  6. Bsat, N., Herbig, A., Casillas-Martinez, L., Setlow, P. & Helmann, J. D. ( 1998; ). Bacillus subtilis contains multiple Fur homologs: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29, 189-198.[CrossRef]
    [Google Scholar]
  7. Camilli, A. & Mekalanos, J. J. ( 1995; ). Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol 18, 671-683.[CrossRef]
    [Google Scholar]
  8. Chauhan, S. & O’Brian, M. R. ( 1993; ). Bradyrhizobium japonicum δ-aminolevulinic acid dehydratase is essential for symbiosis with soybean and contains a novel metal-binding domain. J Bacteriol 175, 7222-7227.
    [Google Scholar]
  9. Chauhan, S. & O’Brian, M. R. ( 1995; ). A mutant Bradyrhizobium japonicum δ-aminolevulinic acid dehydratase with an altered metal requirement functions in situ for tetrapyrrole synthesis in soybean root nodules. J Biol Chem 270, 19823-19827.[CrossRef]
    [Google Scholar]
  10. Chauhan, S. & O’Brian, M. R. ( 1997; ). Transcriptional regulation of δ-aminolevulinic acid dehydratase synthesis by oxygen in Bradyrhizobium japonicum and evidence for developmental control of the hemB gene. J Bacteriol 179, 3706-3710.
    [Google Scholar]
  11. Chauhan, S., Titus, D. E. & O’Brian, M. R. ( 1997; ). Metals control activity and expression of the heme biosynthesis enzyme δ-aminolevulinic acid dehydratase in Bradyrhizobium japonicum. J Bacteriol 179, 5516-5520.
    [Google Scholar]
  12. De Luca, N. G., Wexler, M., Pereira, M. J., Yeoman, K. H. & Johnston, A. W. B. ( 1998; ). Is the fur gene in Rhizobium leguminosarum essential? FEMS Microbiol Lett 168, 289-295.[CrossRef]
    [Google Scholar]
  13. Ditta, G., Schmidhauser, T., Yakobson, E., Lu, P., Liang, X.-W., Finlay, D. R., Guiney, D. & Helinski, D. R. ( 1985; ). Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13, 149-153.[CrossRef]
    [Google Scholar]
  14. Foster, J. W. & Hall, H. K. ( 1992; ). Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol 174, 4317-4323.
    [Google Scholar]
  15. Frustaci, J. M., Sangwan, I. & O’Brian, M. R. ( 1991; ). Aerobic growth and respiration of a δ-aminolevulinic acid synthase (hemA) mutant of Bradyrhizobium japonicum. J Bacteriol 173, 1145-1150.
    [Google Scholar]
  16. Gaballa, A. & Helmann, J. D. ( 1998; ). Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180, 5815-5821.
    [Google Scholar]
  17. Guo, G. G., Gu, M. & Etlinger, J. D. ( 1994; ). 240-kDa proteosome inhibitor (CF-2) is identical to δ-aminolevulinic acid dehydratase. J Biol Chem 269, 12399-12402.
    [Google Scholar]
  18. Hamza, I., Chauhan, S., Hassett, R. & O’Brian, M. R. ( 1998; ). The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J Biol Chem 273, 21669-21674.[CrossRef]
    [Google Scholar]
  19. Hamza, I., Hassett, R. & O’Brian, M. R. ( 1999; ). Identification of a functional fur gene in Bradyrhizobium japonicum. J Bacteriol 181, 5843-5846.
    [Google Scholar]
  20. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.[CrossRef]
    [Google Scholar]
  21. Hantke, K. ( 1987; ). Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K12: fur not only affects iron metabolism. Mol Gen Genet 210, 135-139.[CrossRef]
    [Google Scholar]
  22. Kuykendahl, L. D. & Elkan, G. H. ( 1976; ). Rhizobium japonicum derivatives differing in nitrogen-fixing efficiency and carbohydrate utilization. Appl Environ Microbiol 32, 511-519.
    [Google Scholar]
  23. Litwin, C. M. & Calderwood, S. B. ( 1994; ). Analysis of the complexity of gene regulation by fur in Vibrio cholerae. J Bacteriol 176, 240-248.
    [Google Scholar]
  24. de Lorenzo, V., Giovannini, F., Herrero, M. & Neilands, J. B. ( 1988; ). Metal ion regulation of gene expression. Fur repressor-operator interaction at the promoter region of the aerobactin system of pColV-K30. J Mol Biol 203, 875-884.[CrossRef]
    [Google Scholar]
  25. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. O’Brian, M. R., Kirshbom, P. M. & Maier, R. J. ( 1987; ). Tn5-induced cytochrome mutants of Bradyrhizobium japonicum: effects of the mutations on cells grown symbiotically and in culture. J Bacteriol 169, 1089-1094.
    [Google Scholar]
  27. Ochsner, U. A. & Vasil, M. L. ( 1996; ). Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci USA 93, 4409-4414.[CrossRef]
    [Google Scholar]
  28. Page, K. M., Connolly, E. L. & Guerinot, M. L. ( 1994; ). Effect of iron availability on expression of the Bradyrhizobium japonicum hemA gene. J Bacteriol 176, 1535-1538.
    [Google Scholar]
  29. Patzer, S. I. & Hantke, K. ( 1998; ). The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28, 1199-1210.[CrossRef]
    [Google Scholar]
  30. Qi, Z., Hamza, I. & O’Brian, M. R. ( 1999; ). Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc Natl Acad Sci USA 96, 13056-13061.[CrossRef]
    [Google Scholar]
  31. Sangwan, I. & O’Brian, M. R. ( 1991; ). Evidence for an inter-organismic heme biosynthetic pathway in symbiotic soybean root nodules. Science 251, 1220-1222.[CrossRef]
    [Google Scholar]
  32. Tsolis, R. M., Baumler, A. J., Stojiljkovic, I. & Heffron, F. ( 1995; ). Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. J Bacteriol 177, 4628-4637.
    [Google Scholar]
  33. Wang, J., Mushegian, A., Lory, S. & Jin, S. ( 1996; ). Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc Natl Acad Sci USA 93, 10434-10439.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-669
Loading
/content/journal/micro/10.1099/00221287-146-3-669
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error