1887

Abstract

OutB is a component of the Out secretion machinery. Homologues of OutB have been described in two other bacteria, and , but their requirement in the secretion process seems to be different. Study of OutB topology with the BlaM topology probe suggests that it is an inner-membrane protein with a large periplasmic domain. However, fractionation experiments indicate that it could be associated with the outer membrane through its C-terminal part. The secretion deficiency of an mutant can be reversed by the addition of an inducer of the regulon. It was shown that this effect results from the increased expression of the secretin OutD and that secretion can be restored in an mutant by introducing the gene on a plasmid. Several experiments suggest an interaction between OutB and OutD. In , the presence of OutD stabilizes OutB. OutD expressed in can be protected from proteolytic degradation by the coexpression of OutB. This effect does not require the N-terminal, transmembrane segment of . OutB can be cross-linked with OutD by formaldehyde. These results indicate that OutB could act with OutD in the functioning of the Out secretion machinery.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-639
2000-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460639a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-639&mimeType=html&fmt=ahah

References

  1. Andro T., Chambost J. P., Kotoujanski A., Cattaneo J., Bertheau Y., Barras F., van Gijsegem F., Coleno A. 1984; Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. J Bacteriol 160:1199–1203
    [Google Scholar]
  2. Bitter W., Koster M., Latijnhouwers M., de Cock H., Tommassen J. 1998; Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 27:209–219 [CrossRef]
    [Google Scholar]
  3. Bleves S., Voulhoux R., Michel G., Lazdunski A., Tommassen J., Filloux A. 1998; The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol Microbiol 27:31–40 [CrossRef]
    [Google Scholar]
  4. Broome-Smith J. K., Tadayvon M., Zhang Y. 1990; β-Lactamase as a probe of membrane protein assembly and protein export. Mol Microbiol 4:1637–1644 [CrossRef]
    [Google Scholar]
  5. Condemine G., Robert-Baudouy J. 1987; 2-Keto-3-deoxygluconate transport system in Erwinia chrysanthemi. J Bacteriol 169:1972–1978
    [Google Scholar]
  6. Condemine G., Robert-Baudouy J. 1995; Synthesis and secretion of Erwinia chrysanthemi virulence factors are coregulated. Mol Plant Microbe Interact 8:632–636 [CrossRef]
    [Google Scholar]
  7. Condemine G., Dorel C., Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. 1992; Some of the out genes involved in protein secretion of pectate lyases in Erwinia chrysanthemi are regulated by kdgR. Mol Microbiol 6:3199–3211 [CrossRef]
    [Google Scholar]
  8. Daefler S., Guilvout I., Hardie K. R., Pugsley A. P., Russel M. 1997; The C-terminal domain of the secretin PulD contains the binding site for its cognate chaperone, PulS, and confers PulS dependence on pIVf1 function. Mol Microbiol 24:465–475 [CrossRef]
    [Google Scholar]
  9. Dykxhoorn D. M., St Pierre R., Linn T. 1996; A set of compatible tac promoter expression vectors. Gene 177:133–136 [CrossRef]
    [Google Scholar]
  10. d’Enfert C., Pugsley A. P. 1989; Klebsiella pneumoniae pulS gene encodes an outer membrane lipoprotein required for pullulanase secretion. J Bacteriol 171:3673–3679
    [Google Scholar]
  11. Francetic O., Pugsley A. P. 1996; The cryptic general secretory pathway (gsp) operon of Escherichia coli K-12 encodes functional proteins. J Bacteriol 178:3544–3549
    [Google Scholar]
  12. Hardie K. R., Lory S., Pugsley A. P. 1996; Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J 15:978–988
    [Google Scholar]
  13. Howard S. P., Meiklejohn H. G., Shivak D., Jahagirdar R. 1996; A TonB-like protein and a novel membrane protein containing an ATP-binding cassette function together in exotoxin secretion. Mol Microbiol 22:595–604 [CrossRef]
    [Google Scholar]
  14. Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. 1985; Lactose metabolism in Erwinia chrysanthemi. J Bacteriol 129:1223–1231
    [Google Scholar]
  15. Jahagirdar R., Howard S. P. 1994; Isolation and characterization of a second exe operon required for extracellular protein secretion in Aeromonas hydrophila. J Bacteriol 176:6819–6826
    [Google Scholar]
  16. Jiang B., Howard S. P. 1991; Mutagenesis and isolation of Aeromonas hydrophila genes which are required for extracellular secretion. J Bacteriol 173:1241–1249
    [Google Scholar]
  17. Johnson B. H., Hecht M. H. 1994; Recombinant proteins can be isolated from E. coli by repeated cycles of freezing and thawing. Bio/Technology 12:1357–1360 [CrossRef]
    [Google Scholar]
  18. Kagami Y., Ratliff M., Surber M., Martinez A., Nunn D. N. 1998; Type II protein secretion by Pseudomonas aeruginosa: genetic suppression of a condition of a conditional mutation in the pilin-like component XcpT by the cytoplasmic component XcpR. Mol Microbiol 27:221–233 [CrossRef]
    [Google Scholar]
  19. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  21. Letain T. E., Postle K. 1997; TonB protein appears to transduce energy by shuttling between the cytoplasmic membrane and the outer membrane in Escherichia coli. Mol Microbiol 24:271–283 [CrossRef]
    [Google Scholar]
  22. Lindeberg M., Collmer A. 1992; Analysis of eight genes in a cluster required for pectic enzyme secretion by Erwinia chrysanthemi: sequence comparison with secretion genes from other Gram-negative bacteria. J Bacteriol 174:7385–7397
    [Google Scholar]
  23. Lindeberg M., Salmond G. P. C., Collmer A. 1996; Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of species-specific secretion via the type II pathway. Mol Microbiol 20:175–190 [CrossRef]
    [Google Scholar]
  24. Linderoth N. A., Simon M. N., Russel M. 1997; The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science 278:1635–1638 [CrossRef]
    [Google Scholar]
  25. Michel G., Bleves S., Ball G., Lazdunski A., Filloux A. 1998; Mutual stabilization between XcpZ and XcpY components of the secretory apparatus in Pseudomonas aeruginosa. Microbiology 144:3379–3386 [CrossRef]
    [Google Scholar]
  26. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Nunn D. N., Lory S. 1991; Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc Natl Acad Sci USA 88:3281–3285 [CrossRef]
    [Google Scholar]
  28. Osborn M. J., Gander J. E., Parisi E., Carson J. 1972; Mechanism of assembly of the outer membrane of Salmonella typhimurium. J Biol Chem 247:3962–3972
    [Google Scholar]
  29. Possot O. M., Gérard-Vincent M., Pugsley A. P. 1999; Membrane association and multimerization of secretion component PulC. J Bacteriol 181:4004–4011
    [Google Scholar]
  30. Pugsley A. P. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  31. Pugsley A. P., Possot O. 1993; The general secretory pathway of Klebsiella oxytoca: no evidence for relocalization or assembly of pilin-like PulG protein into a multiprotein complex. Mol Microbiol 10:665–674 [CrossRef]
    [Google Scholar]
  32. Py B., Loiseau L., Barras F. 1999; Assembly of the type II secretion machinery of Erwinia chrysanthemi: direct interaction and associated conformational change between OutE, the putative ATP-binding component and the membrane protein OutL. J Mol Biol 289:659–670 [CrossRef]
    [Google Scholar]
  33. Reeves P. J., Douglas P., Salmond G. P. C. 1994; The general secretion pathway of Erwinia carotovora subsp. carotovora: analysis of the cytoplasmic membrane topology of seven Out proteins using a β-lactamase topology probe. Mol Microbiol 12:445–457 [CrossRef]
    [Google Scholar]
  34. Reverchon S., Nasser W., Robert-Baudouy J. 1994; pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol Microbiol 11:1127–1139 [CrossRef]
    [Google Scholar]
  35. Russel M., Model P. 1984; Replacement of the fip gene of Escherichia coli by an inactive gene cloned on a plasmid. J Bacteriol 159:1034–1039
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sandkvist M., Bagdasarian M., Howard S. P., DiRita V. J. 1995; Interaction between the autokinase EspE and EspL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J 14:1664–1673
    [Google Scholar]
  38. Sandkvist M., Hough L. P., Bagdasarian M. M., Bagdasarian M. 1999; Direct interaction of the EpsL and EpsM proteins of the general secretion apparatus in Vibrio cholerae. J Bacteriol 181:3129–3135
    [Google Scholar]
  39. Schmidt H., Henkel B., Karch H. 1997; A gene cluster closely related to type II secretion pathway operons of Gram-negative bacteria is located on the large plasmid of enterohemorrhagic coli Escherichia coli O157 strains. FEMS Microbiol Lett 148:265–272 [CrossRef]
    [Google Scholar]
  40. Schoenhofen I. C., Stratilo C., Howard S. P. 1998; An ExeAB complex in the type II secretion pathway of Aeromonas hydrophila: effect of ATP-binding cassette mutations on complex formation and function. Mol Microbiol 29:1237–1247 [CrossRef]
    [Google Scholar]
  41. Shevchik V. E., Condemine G. 1998; Functional characterization of the Erwinia chrysanthemi OutS protein, an element of a type II secretion system. Microbiology 144:3219–3228 [CrossRef]
    [Google Scholar]
  42. Shevchik V. E., Condemine G., Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. 1996; Characterizaton of pectin methylesterase B, an outer membrane lipoprotein of Erwinia chrysanthemi. Mol Microbiol 19:455–466 [CrossRef]
    [Google Scholar]
  43. Shevchik V. E., Robert-Baudouy J., Condemine G. 1997; Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway and secreted proteins. EMBO J 16:3007–3016 [CrossRef]
    [Google Scholar]
  44. Tabor S., Richardson C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078 [CrossRef]
    [Google Scholar]
  45. Thomas J. D., Reeves P. J., Salmond G. P. C. 1997; The general secretion pathway of Erwinia carotovora subsp. carotovora: analysis of the membrane topology of OutC and OutF. Microbiology 143:713–720 [CrossRef]
    [Google Scholar]
  46. Wood P. J. 1980; Specificity in the interaction of direct dyes with polysaccharides. Carbohydrate Res 85:271–287 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-639
Loading
/content/journal/micro/10.1099/00221287-146-3-639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error