1887

Abstract

Carnobacteriocin A (CbnA) is a regulated bacteriocin produced by LV17A that is encoded on a 72 kb plasmid. A 100 kb fragment from this plasmid that contained information necessary for bacteriocin production and immunity was cloned and sequenced. Genetic analysis showed the presence of the previously sequenced structural gene for CbnA, as well as genes encoding proteins homologous to dedicated bacteriocin transport proteins and proteins of three-component signal transduction systems. The induction factor (CbnX) was chemically synthesized and induced CbnA production at 10 M or higher in a LV17A culture that had lost the ability to produce bacteriocin as a result of dilution. The gene for the immunity protein is not located in typical close proximity to the structural gene for CbnA and is encoded in the opposite orientation. CbiA has homology with EniB, the immunity protein for enterocin B that is also encoded in the opposite orientation to the bacteriocin gene. CbiA and EniB cross-protected against the corresponding bacteriocins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-621
2000-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460621a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-621&mimeType=html&fmt=ahah

References

  1. Ahn C., Stiles M. E. 1990; Plasmid-associated bacteriocin production by a strain of Carnobacterium piscicola from meat. Appl Environ Microbiol 56:2503–2510
    [Google Scholar]
  2. Ahn C., Stiles M. E. 1992; Mobilization and expression of bacteriocin plasmids from Carnobacterium piscicola isolated from meat. J Appl Bacteriol 73:217–228 [CrossRef]
    [Google Scholar]
  3. Allison G. E , Klaenhammer T. R. 1996; Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food grade genetic marker. Appl Environ Microbiol 62:4450–4460
    [Google Scholar]
  4. Anderssen E. L., Diep D. B., Nes I. F., Eijsinck V. G. H., Nissen-Meyer J. 1998; Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64:2269–2272
    [Google Scholar]
  5. Axelsson L., Holck A. 1995; The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177:2125–2137
    [Google Scholar]
  6. Aymerich T., Holo H., Håvarstein L. S., Hugas M., Garriga M., Nes I. F. 1996; Biochemical and genetic characterization of EntA from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682
    [Google Scholar]
  7. van Belkum M. J., Hayema B. J., Jeeninga R. E., Kok J., Venema G. 1991; Organization and nucleotide sequence of two lactococcal bacteriocin operons. Appl Environ Microbiol 57:492–498
    [Google Scholar]
  8. van Belkum M. J., Stiles M. E. 1995; Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl Environ Microbiol 61:3573–3884
    [Google Scholar]
  9. Berthier F., Zagorec M., Champomier-Vergès M., Ehrlich S. D., Morel-Deville F. 1996; Efficient transformation of Lactobacillus sake by electroporation. Microbiology 142:1273–1279 [CrossRef]
    [Google Scholar]
  10. Brurberg M. B., Nes I. F., Eijsinck V. G. H. 1997; Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 26:347–360 [CrossRef]
    [Google Scholar]
  11. Casadaban M. C., Cohen S. N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207 [CrossRef]
    [Google Scholar]
  12. Casaus P., Nilsen T., Cintas L. M., Nes I. F., Hernández P. E., Holo H. 1997; Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143:2287–2294 [CrossRef]
    [Google Scholar]
  13. Chung C. T., Niemela S. L., Miller R. H. 1989; One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86:2172–2175 [CrossRef]
    [Google Scholar]
  14. Diep D. B., Håvarstein L. S., Nes I. F. 1995; A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18:631–639 [CrossRef]
    [Google Scholar]
  15. Diep D. B., Håvarstein L. S., Nes I. F. 1996; Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178:4472–4483
    [Google Scholar]
  16. Dunny G. M., Leonard B. A. B. 1997; Cell–cell communication in gram-positive bacteria. Annu Rev Microbiol 51:527–564 [CrossRef]
    [Google Scholar]
  17. Eijsink V. G. H., Skeie M., Middelhoven P. H., Brurberg M. B., Nes I. F. 1998; Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281
    [Google Scholar]
  18. Franz C. M. A. P., Worobo R. W., Quadri L. E. N., Schillinger U., Holzapfel W. H., Vederas J. C., Stiles M. E. 1999; Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl Environ Microbiol 65:2170–2178
    [Google Scholar]
  19. van de Guchte M., van der Vossen J. M. B. M., Kok J., Venema G. 1989; Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol 55:224–228
    [Google Scholar]
  20. Holck A., Axelsson L., Schillinger U. 1994; Purification and cloning of piscicolin 61, a bacteriocin from Carnobacterium piscicola LV61. Curr Microbiol 29:63–68 [CrossRef]
    [Google Scholar]
  21. Hühne K., Axelsson L., Holck A., Kröckel L. 1996; Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology 142:1437–1448 [CrossRef]
    [Google Scholar]
  22. Jewell B., Collins-Thompson D. L. 1989; Characterization of chloramphenicol resistance in Lactobacillus plantarum caTC2. Curr Microbiol 19:343–346 [CrossRef]
    [Google Scholar]
  23. Klaenhammer T. R. 1993; Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86 [CrossRef]
    [Google Scholar]
  24. Kuipers O. P., Beerthuysen M. M., Siezen R. J., de Vos W. M. 1993; Characterization of nisin gene cluster nisABTCIPR of Lactococcus lactis: requirement of expression of nisA and nisI for producer immunity. Eur J Biochem 216:281–291 [CrossRef]
    [Google Scholar]
  25. McCormick J. K., Worobo R. W., Stiles M. E. 1996; Expression of the antimicrobial peptide carnobacteriocin B2 by a signal peptide-dependent general secretory pathway. Appl Environ Microbiol 62:4095–4099
    [Google Scholar]
  26. McCormick J. K., Poon A., Sailer M., Gao Y., Roy K. L., McMullen L. M., Vederas J. C., Stiles M. E., van Belkum M. J. 1998; Genetic characterization and heterologous expression of brochocin-c, an antibotulinal, two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754. Appl Environ Microbiol 64:4757–4766
    [Google Scholar]
  27. Martı́nez-Bueno M., Valdivia E., Gálves A., Coyette J., Maqueda M. 1998; Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Mol Microbiol 27:347–358 [CrossRef]
    [Google Scholar]
  28. van der Meer J. P., Polman J., Beerthyuzen M. M., Siezen R. J., Kuipers O. P., de Vos W. M. 1993; Characterization of Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175:2578–2588
    [Google Scholar]
  29. Nes I. F., Diep D. B., Håvarstein L. S., Brurberg M. B., Eijsinck V., Holo H. 1996; Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Leeuwenhoek 70:113–128 [CrossRef]
    [Google Scholar]
  30. Nilsen T., Nes I. F., Holo H. 1998; An exported inducer peptide regulates bacteriocin-production in Enterococcus faecium CTC492. J Bacteriol 180:1848–1854
    [Google Scholar]
  31. Nissen-Meyer J., Holo H., Håvarstein L. S., Sletten K., Nes I. F. 1992; A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692
    [Google Scholar]
  32. O’Keeffe T., Hill C., Ross R. P. 1999; Characterization and heterologous expression of the genes encoding enterocin A production, immunity and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 65:1506–1515
    [Google Scholar]
  33. Quadri L. E. N., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. 1994; Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Biol Chem 269:12204–12211
    [Google Scholar]
  34. Quadri L. E. N., Sailer M., Terebiznik M. R., Roy K. L., Vederas J. C., Stiles M. E. 1995; Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. J Bacteriol 177:1144–1151
    [Google Scholar]
  35. Quadri L. E. N., Kleerebezem M., Kuipers O. P., de Vos W. M., Roy K. L., Vederas J. C., Stiles M. E. 1997; Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. J Bacteriol 179:6163–6171
    [Google Scholar]
  36. Rincé A., Dufour A., Uguen P., Le Pennec J.-P., Haras D. 1997; Characterization of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity. Appl Environ Microbiol 63:4252–4260
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Siegers K., Entian K.-D. 1995; Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 61:1082–1089
    [Google Scholar]
  39. Stephens S. K., Floriano B., Cathcart D. P., Bayley S. A., Witt V. F., Jiménez Dı́az R., Warner P. J., Ruiz-Barba J. L. 1998; Molecular analysis of the locus responsible for production of plantaricin S, a two-peptide bacteriocin produced by Lactobacillus plantarum LPCO10. Appl Environ Microbiol 64:1871–1877
    [Google Scholar]
  40. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  41. Worobo R. W. 1996 Characterization of two bacteriocins and a food grade plasmid from carnobacteria PhD thesis University of Alberta;
    [Google Scholar]
  42. Worobo R. W., Henkel T., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. 1994; Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology 140:517–526 [CrossRef]
    [Google Scholar]
  43. Worobo R. W., van Belkum M. J., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. 1995; A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J Bacteriol 177:3143–3149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-621
Loading
/content/journal/micro/10.1099/00221287-146-3-621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error