1887

Abstract

Mutations induced by the integration of a Mu2ts prophage can revert at frequencies around 1×10. In these revertant clones, the prophage excised from its original localization is not lost but reintegrated elsewhere in the host genome. One of the most intriguing aspects of this process is that the prophage reintegration is not randomly distributed: there is a strong correlation between the original site of insertion (the donor site) and the target site of the phage DNA migration (the receptor site). In this paper, it is shown that in the excision–reintegration process mediated by Mu2ts, the position of the initial prophage site strongly influences the location of the reintegration site. In addition, for each donor site, the receptor site is a discrete DNA region within which the excised Mu DNA can reintegrate and the two sites implicated in phage DNA migration must be located on the same DNA molecule. These data suggest the involvement of nucleoid folding in the excision–reintegration process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-591
2000-03-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460591a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-591&mimeType=html&fmt=ahah

References

  1. Bukhari A. I. 1975; Reversal of mutator phage Mu integration. J Mol Biol 96:87–99 [CrossRef]
    [Google Scholar]
  2. Casadeus J., Roth J. R. 1989; Transcriptional occlusion of transposon targets. Mol Gen Genet 216:204–209 [CrossRef]
    [Google Scholar]
  3. Craig N. L. 1997; Target site selection in transposition. Annu Rev Biochem 66:437–474 [CrossRef]
    [Google Scholar]
  4. Fuchs R., Stoehr P., Rice P., Omond R., Cameron G. 1990; New services of the EMBL data library. Nucleic Acids Res 18:4319–4323 [CrossRef]
    [Google Scholar]
  5. Ghelardini P., Lièbart J. C., Di Zenzo G., Micheli G., D’Ari R., Paolozzi L. 1994; A novel illegitimate recombination event: precise excision and reintegration with Mugem mutant prophage. Mol Microbiol 13:709–718 [CrossRef]
    [Google Scholar]
  6. Ghelardini P., Lièbart J. C., Fabozzi G., Tomassini B., D’Ari R., Paolozzi L. 1995; Reversal of Mugem2ts-induced mutations. FEMS Microbiol Rev 17:171–176 [CrossRef]
    [Google Scholar]
  7. Grindley N. D., Reed R. R. 1985; Transpositional recombination in prokaryotes. Annu Rev Biochem 54:863–896 [CrossRef]
    [Google Scholar]
  8. Kleckner N. 1981; Transposable elements in prokaryotes. Annu Rev Genet 15:341–404 [CrossRef]
    [Google Scholar]
  9. Krug P. J., Gileski A. Z., Code R. J., Torjussen A., Schmid M. B. 1994; Endpoint bias in large Tn10-catalyzed inversions in Salmonella typhimurium. Genetics 136:747–756
    [Google Scholar]
  10. La Valle R., Fabozzi G., Ghelardini P., Paolozzi L. 1996; Bacteriophage Mugem2ts, which induces synchronous cell division in the infected host, is mutated in the gem operon promoter. Res Microbiol 147:615–618 [CrossRef]
    [Google Scholar]
  11. Lemon K., Grossman A. D. 1998; Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282:1216–1219
    [Google Scholar]
  12. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774
    [Google Scholar]
  13. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Mizobuchi M., Frohman L. A. 1993; Rapid amplification of genomic DNA ends. Biotechniques 15:213–216
    [Google Scholar]
  15. Pato M. 1989; Bacteriophage Mu. In Mobile DNA pp. 23–52Edited by Berg D. E., Howe M. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Rebollo J. E., Francois V., Louarn J. M. 1988; Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. Proc Natl Acad Sci USA 24:9391–9395
    [Google Scholar]
  17. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning; a Laboratory Manual, 2nd edn. Cold Spring Harbor, NewYork: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Shapiro J. 1984; Observations on the formation of clones containing araB–lacZ cistron fusions. Mol Gen Genet 194:79–90 [CrossRef]
    [Google Scholar]
  19. Wang X., Higgins P. 1994; ‘Muprints’ of the lac operon demonstrate physiological control over the randomness of in vivo transposition. Mol Microbiol 12:665–677 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-591
Loading
/content/journal/micro/10.1099/00221287-146-3-591
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error