1887
Preview this article:
Zoom in
Zoomout

Bacterial respiration: a flexible process for a changing environment

(Delivered at the 144th meeting of the Society for General Microbiology, 8 September 1999)

, Page 1 of 1

| /docserver/preview/fulltext/micro/146/3/1460551a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-551
2000-03-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460551a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-551&mimeType=html&fmt=ahah

References

  1. Aylott J. W., Richardson D. J., Russell D. A. 1997; Optical sensing of nitrate using a sol-gel immobilised nitrate reductase. Analyst 122:77–80 [CrossRef]
    [Google Scholar]
  2. Bamford V., Dobbin P. S., Richardson D. J., Hemmings A. M. 1999; Open conformation of a flavocytochrome c 3 fumarate reductase. Nat Struct Biol 6:1104–1107 [CrossRef]
    [Google Scholar]
  3. Bedzyk L., Wang T., Ye R. W. 1999; The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J Bacteriol 181:2802–2806
    [Google Scholar]
  4. Beliaev A. S., Saffarini D. A. 1998; Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292–6297
    [Google Scholar]
  5. Bell L. C., Richardson D. J., Ferguson S. J. 1990; Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha: the periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Lett 265:85–87 [CrossRef]
    [Google Scholar]
  6. Bell L. C., Richardson D. J., Ferguson S. J. 1992; Identification of nitric oxide reductase activity in Rhodobacter capsulatus: the electron-transport pathway can either use or bypass both cytochrome c 2 and the cytochrome bc 1 complex. J Gen Microbiol 138:437–443 [CrossRef]
    [Google Scholar]
  7. Bennett B., Benson N., McEwan A. G., Bray R. C. 1994a; Multiple states of the molybdenum centre of dimethylsulphoxide reductase from Rhodobacter capsulatus revealed by EPR spectroscopy. Eur J Biochem 225:321–331 [CrossRef]
    [Google Scholar]
  8. Bennett B., Berks B. C., Ferguson S. J., Thomson A. J., Richardson D. J. 1994b; Mo(V) electron paramagnetic resonance signals from the periplasmic nitrate reductase of Thiosphaera pantotropha. Eur J Biochem 226:789–798 [CrossRef]
    [Google Scholar]
  9. Bennett B., Charnock J. M., Sears H. J., Berks B. C., Thomson A. J., Ferguson S. J., Garner C. D., Richardson D. J. 1996; Structural investigation of the molybdenum site of the periplasmic nitrate reductase from Thiosphaera pantotropha by X-ray absorption spectroscopy. Biochem J 317:557–563
    [Google Scholar]
  10. Bergmann D. J., Arciero D. M., Hooper A. B. 1994; Organization of the hao gene cluster of Nitrosomonas europaea: genes for two tetraheme c cytochromes. J Bacteriol 176:3148–3153
    [Google Scholar]
  11. Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J. 1995a; Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232:97–173 [CrossRef]
    [Google Scholar]
  12. Berks B. C., Page M. D., Richardson D. J., Reilly A., Cavill A., Outen F., Ferguson S. J. 1995b; Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Mol Microbiol 15:319–331 [CrossRef]
    [Google Scholar]
  13. Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J. 1995c; The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J 309:983–992
    [Google Scholar]
  14. Blattner F. R., Plunkett G. III, Bloch C. A.14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  15. Boyington J. C., Gladyshev V. N., Khangulov S. V., Stadtman T. C., Sun P. D. 1997; Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308 [CrossRef]
    [Google Scholar]
  16. Brudwig G. W., Steven T. H., Chan S. I. 1980; Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 19:5275–5285 [CrossRef]
    [Google Scholar]
  17. Buc J., Santini C. L., Giordani R., Czjzek M., Wu L. F., Giordano G. 1999; Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli. Mol Microbiol 32:159–168 [CrossRef]
    [Google Scholar]
  18. Bult C. J., White O., Olsen G. J.20 other authors 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073 [CrossRef]
    [Google Scholar]
  19. Butler C. S., Seward H. E., Greenwood C., Thomson A. J. 1997; Fast cytochrome bo from Escherichia coli binds two molecules of nitric oxide at CuB. Biochemistry 36:16259–16266 [CrossRef]
    [Google Scholar]
  20. Butler C. S., Charnock J. M., Bennett B.8 other authors 1999; Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Biochemistry 38:9000–9012 [CrossRef]
    [Google Scholar]
  21. Castillo F., Dobao M. M., Reyes F., Blasco R., Roldán M. D., Gavira M., Caballero F. J., Moreno-Vivián C., Martı́nez-Luque M. 1996; Molecular and regulatory properties of the nitrate reducing systems of Rhodobacter. Curr Microbiol 33:341–346 [CrossRef]
    [Google Scholar]
  22. Castresana J., Moreira D. 1999; Respiratory chains in the last common ancestor of living organisms. J Mol Evol 49:453–460 [CrossRef]
    [Google Scholar]
  23. Castresana J., Saraste M. 1995; Evolution of energetic metabolism: the respiration-early hypothesis. Trends Biochem Sci 20:443–448 [CrossRef]
    [Google Scholar]
  24. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  25. Craig J. A., Holm R. H. 1989; Reduction of nitrate to nitrite by molybdenum mediated atom transfer: a nitrate reductase analogue reaction system. J Am Chem Sci 114:2111–2115
    [Google Scholar]
  26. Cramm R., Siddiqui R. A., Friedrich B. 1997; Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J Bacteriol 179:6769–6777
    [Google Scholar]
  27. Cramm R., Pohlmann A., Friedrich B. 1999; Purification and characterisation of a single component nitric oxide reductase from Ralstonia eutropha H16. FEBS Lett 460:6–10 [CrossRef]
    [Google Scholar]
  28. Czjzek M., Dos Santos J. P., Pommier J., Giordano G., Mejean V., Haser R. 1998; Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2·5 Å resolution. J Mol Biol 284:435–447 [CrossRef]
    [Google Scholar]
  29. Darwin A. J., Stewart V. 1995; Nitrate and nitrite regulation of the Fnr-dependent aeg-46.5 promoter of Escherichia coli K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site. J Mol Biol 251:15–29 [CrossRef]
    [Google Scholar]
  30. Darwin A., Hussain H., Griffiths L., Grove J., Sambongi Y., Busby S., Cole J. 1993; Regulation and sequence of the structural gene for cytochrome c 552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol 9:1255–1265 [CrossRef]
    [Google Scholar]
  31. Dias J. M., Than M. E., Humm A.10 other authors 1999; Crystal structure of the first dissimilatory nitrate reductase at 1·9 Å solved by MAD methods. Structure 7:65–79 [CrossRef]
    [Google Scholar]
  32. D’mello R., Hill S., Poole R. K. 1996; The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142:755–763 [CrossRef]
    [Google Scholar]
  33. Dobbin P., Powell A. K., McEwan A. G., Richardson D. J. 1995; The influence of chelating agents on the dissimilatory reduction of iron(III) by Shewanella putrefaciens. Biometals 8:163–173
    [Google Scholar]
  34. Dobbin P. S., Requena Burmeister L. M., Heath S. L., Powell A. K., McEwan A. G., Richardson D. J. 1996a; The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens. II. Oxo- and hydroxo-bridged polynuclear Fe(III) complexes. Biometals 9:291–301 [CrossRef]
    [Google Scholar]
  35. Dobbin P. S., Warren L. H., Cook N. J., McEwan A. G., Powell A. K., Richardson D. J. 1996b; Dissimilatory iron(III) reduction by Rhodobacter capsulatus. Microbiology 142:765–774 [CrossRef]
    [Google Scholar]
  36. Dobbin P. S., Butt J. N., Powell A. K., Reid G. A., Richardson D. J. 1999; Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe(III) by Shewanella frigidimarina NCIMB 400. Biochem J 342:439–448 [CrossRef]
    [Google Scholar]
  37. Dolfing J. 1990; Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol 153:264–266 [CrossRef]
    [Google Scholar]
  38. Einsle O., Messerschmidt A., Stach P., Bourenkov G. P., Bartunik H. D., Huber R., Kroneck P. M. 1999; Structure of cytochrome c nitrite reductase. Nature 400:476–480 [CrossRef]
    [Google Scholar]
  39. Farrar J. A., Zumft W. G., Thomson A. J. 1998; CuA and CuZ are variants of the electron transfer center in nitrous oxide reductase. Proc Natl Acad Sci USA 95:9891–9896 [CrossRef]
    [Google Scholar]
  40. Ferguson S. J. 1998; Nitrogen cycle enzymology. Curr Opin Chem Biol 2:182–193 [CrossRef]
    [Google Scholar]
  41. Ferguson S. J., Jackson J. B., McEwan A. G. 1987; Anaerobic respiration in the Rhodospirillaceae. FEMS Microbiol Rev 46:117–143 [CrossRef]
    [Google Scholar]
  42. Field S., Dobbin P. S., Cheesman M. R., Watmough N. J., Thomson A. J., Richardson D. J. 2000; Purification and magneto-optical characterisation of membrane-bound multi-heme cytochromes from Shewanella frigidimarina. J Biol Chem 275: in press
    [Google Scholar]
  43. Flanagan D. A., Gregory L. G., Carter J. P., Karakas-Sen A., Richardson D. J., Spiro S. 1999; Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiol Lett 177:263–270 [CrossRef]
    [Google Scholar]
  44. Fleischmann R. D., Adams M. D., White O.37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  45. de Gier J. W., Lubben M., Reijnders W. N., Tipker C. A., Slotboom D. J., van Spanning R. J., Stouthamer A. H., van der Oost J. 1994; The terminal oxidases of Paracoccus denitrificans. Mol Microbiol 13:183–196 [CrossRef]
    [Google Scholar]
  46. Girsch P., de Vries S. 1997; Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans. Biochim Biophys Acta 1318:202–216 [CrossRef]
    [Google Scholar]
  47. Gold T. 1992; The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049 [CrossRef]
    [Google Scholar]
  48. Grönberg K. L. C., Roldan M. D., Prior L., Butland G., Cheesman M. R., Richardson D. J., Spiro S., Thomson A. J., Watmough N. J. 1999; A low redox potential haem in the dinuclear centre of bacterial nitric oxide reductase: implications for the evolution of energy-conserving haem-copper oxidases. Biochemistry 38:13780–13786 [CrossRef]
    [Google Scholar]
  49. Hallin S., Lindgren P. E. 1999; PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657
    [Google Scholar]
  50. Hamilton W. A. 1998; Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact. Biodegradation 9:201–212 [CrossRef]
    [Google Scholar]
  51. Hendriks J., Warne A., Gohlke U., Haltia T., Ludovici C., Lubben M., Saraste M. 1998; The active site of the bacterial nitric oxide reductase is a dinuclear iron center. Biochemistry 37:13102–13109 [CrossRef]
    [Google Scholar]
  52. Hensel M., Hinsley A. P., Nikolaus T., Sawers G., Berks B. C. 1999; The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32:275–287 [CrossRef]
    [Google Scholar]
  53. Hilton J. C., Temple C. A., Rajagopalan K. V. 1999; Redesign of Rhodobacter sphaeroides dimethyl sulfoxide reductase: enhancement of adenosine N1-oxide reductase activity. J Biol Chem 274:8428–8436 [CrossRef]
    [Google Scholar]
  54. Hoehn G. T., Clark V. L. 1992; Isolation and nucleotide sequence of the gene (aniA) encoding the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae. Infect Immun 60:4695–4703
    [Google Scholar]
  55. Householder T. C., Belli W. A., Lissenden S., Cole J. A., Clark V. L. 1999; cis- and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J Bacteriol 181:541–551
    [Google Scholar]
  56. Hussain H., Grove J., Griffiths L., Busby S., Cole J. 1994; A seven gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol 12:153–163 [CrossRef]
    [Google Scholar]
  57. Igarashi N., Moriyama H., Fujiwara T., Fukumori Y., Tanaka N. 1997; The 2·8 Å structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. Nat Struct Biol 4:276–284 [CrossRef]
    [Google Scholar]
  58. Iverson T. M., Arciero D. M., Hsu B. T., Logan M. S., Hooper A. B., Rees D. C. 1998; Heme packing motifs revealed by the crystal structure of the tetra-heme cytochrome c554 from Nitrosomonas europaea. Nat Struct Biol 5:1005–1012 [CrossRef]
    [Google Scholar]
  59. Jones M., Richardson D. J., McEwan A. G., Jackson J. B., Ferguson S. J. 1990; In vivo redox poising of the cyclic electron transport system of Rhodobacter capsulatus and the effects of the auxilliary oxidants nitrate, nitrous oxide and trimethylamine N-oxide as revealed by multiple short flash excitation. Biochim Biophys Acta 1017:209–216 [CrossRef]
    [Google Scholar]
  60. Jungst A., Wakabayashi S., Matsubara H., Zumft W. G. 1991; The nirSTBM region coding for cytochrome cd 1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-,di- , and tetraheme proteins. FEBS Lett 279:205–209 [CrossRef]
    [Google Scholar]
  61. Khangulov S. V., Gladyshev V. N., Dismukes G. C., Stadtman T. C. 1998; Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer. Biochemistry 37:3518–3528 [CrossRef]
    [Google Scholar]
  62. Kisker C., Schindelin H., Rees D. C. 1997; Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267 [CrossRef]
    [Google Scholar]
  63. Klenk H. P., Clayton R. A., Tomb J. F.48 other authors 1997; The complete genome sequence of the hyperthermophilic sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370 [CrossRef]
    [Google Scholar]
  64. Konstantinov A. A., Siletsky S., Mitchell D., Kaulen A., Gennis R. B. 1997; The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci USA 94:9085–9090 [CrossRef]
    [Google Scholar]
  65. Krafft T., Macy J. M. 1998; Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653 [CrossRef]
    [Google Scholar]
  66. Leys D., Tsapin A. S., Nealson K. H., Meyer T. E., Cusanovich M. A., van Beeumen J. J. 1999; Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat Struct Biol 6:1113–1117 [CrossRef]
    [Google Scholar]
  67. Lie T. J., Godchaux W., Leadbetter E. R. 1999; Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol 65:4611–4617
    [Google Scholar]
  68. Liu H. P., Takio S., Satoh T., Yamamoto I. 1999; Involvement in denitrification of the napKEFDABC genes encoding the periplasmic nitrate reductase system in the denitrifying phototrophic bacterium Rhodobacter sphaeroides f. sp. denitrificans. Biosci Biotechnol Biochem 63:530–536 [CrossRef]
    [Google Scholar]
  69. Lloyd J. R., Cole J. A., Macaskie L. E. 1997; Reduction and removal of heptavalent technetium from solution by Escherichia coli. J Bacteriol 179:2014–2021
    [Google Scholar]
  70. Lloyd J. R., Ridley J., Khizniak T., Lyalikova N. N., Macaskie L. E. 1999; Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl Environ Microbiol 65:2691–2696
    [Google Scholar]
  71. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J., Schmidt T. M., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408
    [Google Scholar]
  72. Louie T. M., Mohn W. W. 1999; Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. J Bacteriol 181:40–46
    [Google Scholar]
  73. Lovley D. R. 1991; Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287
    [Google Scholar]
  74. Lovley D. R. 1995; Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14:85–93 [CrossRef]
    [Google Scholar]
  75. Lovley D. R. 1997; Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20:305–313 [CrossRef]
    [Google Scholar]
  76. Lovley D. R., Coates J. D. 1997; Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289 [CrossRef]
    [Google Scholar]
  77. Lovley D. R., Phillips E. J. 1992; Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856
    [Google Scholar]
  78. Lovley D. R., Widman P. K., Woodward J. C., Phillips E. J. 1993; Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576
    [Google Scholar]
  79. Lovley D. R., Woodward J. C., Chapelle F. H. 1994; Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128–131 [CrossRef]
    [Google Scholar]
  80. McAlpine A. S., McEwan A. G., Bailey S. 1998; The high resolution crystal structure of DMSO reductase in complex with DMSO. J Mol Biol 275:613–623 [CrossRef]
    [Google Scholar]
  81. McEwan A. G., Cotton N. P. J., Ferguson S. J., Jackson J. B. 1985; The role of auxiliary oxidants in the maintenance of a blanced redox poise for photosynthesis in bacteria. Biochim Biophys Acta 810:140–147 [CrossRef]
    [Google Scholar]
  82. McKay D. S., Gibson E. K. Jr, Thomas-Keprta K. L., Vali H., Romanek C. S., Clemett S. J., Chillier X. D. F., Maechling C. R., Zare R. N. 1996; Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930 [CrossRef]
    [Google Scholar]
  83. Macy J. M., Rech S., Auling G., Dorsch M., Stackebrandt E., Sly L. I. 1993; Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 43:135–142 [CrossRef]
    [Google Scholar]
  84. Macy J. M., Nunan K., Hagen K. D., Dixon D. R., Harbour P. J., Cahill M., Sly L. I. 1996; Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46:1153–1157 [CrossRef]
    [Google Scholar]
  85. Magalon A., Asso M., Guigliarelli B., Rothery R. A., Bertrand P., Giordano G., Blasco F. 1998; Molybdenum cofactor properties and [Fe-S] cluster coordination in Escherichia coli nitrate reductase A: investigation by site-directed mutagenesis of the conserved his-50 residue in the NarG subunit. Biochemistry 37:7363–7370 [CrossRef]
    [Google Scholar]
  86. Matias P. M., Coelho R., Pereira I. A., Coelho A. V., Thompson A. W., Sieker L. C., Gall J. L., Carrondo M. A. 1999; The primary and three-dimensional structures of a nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveal a new member of the Hmc family. Structure Fold Des 7:119–130 [CrossRef]
    [Google Scholar]
  87. Moir J. W., Wehrfritz J. M., Spiro S., Richardson D. J. 1996; The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17. Biochem J 319:823–827
    [Google Scholar]
  88. Moura I., Bursakov S., Costa C., Moura J. G. 1997; Nitrate and nitrite utilisation in sulfate-reducing bacteria. Anaerobe 3:279–290 [CrossRef]
    [Google Scholar]
  89. Myers C. R., Myers J. M. 1997a; Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol 179:1143–1152
    [Google Scholar]
  90. Myers C. R., Myers J. M. 1997b; Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83 kDa c-type cytochrome. Biochim Biophys Acta 1326:307–318 [CrossRef]
    [Google Scholar]
  91. Myers J. M., Myers C. R. 1998; Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens. Biochim Biophys Acta 1373:237–251 [CrossRef]
    [Google Scholar]
  92. Nicholls D. G., Ferguson S. J.Editors 1992 Bioenergetics 2 London: Academic Press;
    [Google Scholar]
  93. van der Oost J., de Boer A. P., de Gier J. W., Zumft W. G., Stouthamer A. H., van Spanning R. J. 1994; The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett 121:1–9 [CrossRef]
    [Google Scholar]
  94. van de Pas B. A., Smidt H., Hagen W. R., van der Oost J., Schraa G., Stams A. J., de Vos W. M. 1999; Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274:20287–20292 [CrossRef]
    [Google Scholar]
  95. Pollock W. B., Loutfi M., Bruschi M., Rapp-Giles B. J., Wall J. D., Voordouw G. 1991; Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovibrio vulgaris Hildenborough. J Bacteriol 173:220–228
    [Google Scholar]
  96. Poole R. K., Hill S. 1997; Respiratory protection of nitrogenase activity in Azotobacter vinelandii – roles of the terminal oxidases. Biosci Rep 17:303–317 [CrossRef]
    [Google Scholar]
  97. Potter L. C., Cole J. A. 1999; Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J 344:69–76 [CrossRef]
    [Google Scholar]
  98. Potter L. C., Millington P., Griffiths L., Thomas G. H., Cole J. A. 1999; Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth?. Biochem J 344:77–84 [CrossRef]
    [Google Scholar]
  99. Preisig O., Anthamatten D., Hennecke H. 1993; Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci USA 90:3309–3313 [CrossRef]
    [Google Scholar]
  100. Qian Y., Tabita F. R. 1998; Expression of glnB and a glnB-like gene (glnK) in a ribulose bisphosphate carboxylase/oxygenase-deficient mutant of Rhodobacter sphaeroides. J Bacteriol 180:4644–4649
    [Google Scholar]
  101. Rabin R. S., Stewart V. 1993; Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol 175:3259–3268
    [Google Scholar]
  102. Reyes F., Gavira M., Castillo F., Moreno-Vivian C. 1998; Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem J 331:897–904
    [Google Scholar]
  103. Richardson D., Ferguson S. J. 1992; The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha. Arch Microbiol 157:535–537
    [Google Scholar]
  104. Richardson D. J., Watmough N. J. 1999; Inorganic nitrogen metabolism in bacteria. Curr Opin Chem Biol 3:207–219 [CrossRef]
    [Google Scholar]
  105. Richardson D. J., King G. F., Kelly D. J., McEwan A. G., Ferguson S. J., Jackson J. B. 1988; The role of auxilliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Arch Microbiol 150:131–137 [CrossRef]
    [Google Scholar]
  106. Richardson D. J., Wehrfritz J. M., Keech A.10 other authors 1998; The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification. Biochem Soc Trans 26:401–408
    [Google Scholar]
  107. Robertson L. A., Kuenen J. G. 1990; Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie Leeuwenhoek 57:139–152 [CrossRef]
    [Google Scholar]
  108. Roldan M. D., Sears H. J., Cheesman M. R., Ferguson S. J., Thomson A. J., Berks B. C., Richardson D. J. 1998; Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. J Biol Chem 273:28785–28790 [CrossRef]
    [Google Scholar]
  109. Rossi M., Pollock W. B., Reij M. W., Keon R. G., Fu R., Voordouw G. 1993; The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol 175:4699–4711
    [Google Scholar]
  110. Rothery R. A., Blasco F., Magalon A., Asso M., Weiner J. H. 1999; The hemes of Escherichia coli nitrate reductase A (NarGHI): potentiometric effects of inhibitor binding to NarI. Biochemistry 38:12747–12757 [CrossRef]
    [Google Scholar]
  111. Saraste M. 1994; Structure and evolution of cytochrome oxidase. Antonie Leeuwenhoek 65:285–287 [CrossRef]
    [Google Scholar]
  112. Saraste M., Castresana J. 1994; Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett 341:1–4 [CrossRef]
    [Google Scholar]
  113. Schafer G., Purschke W., Schmidt C. L. 1996; On the origin of respiration: electron transport proteins from archaea to man. FEMS Microbiol Rev 18:173–188 [CrossRef]
    [Google Scholar]
  114. Schindelin H., Kisker C., Hilton J., Rajagopalan K. V., Rees D. C. 1996; Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272:1615–1621 [CrossRef]
    [Google Scholar]
  115. Schroder I., Rech S., Krafft T., Macy J. M. 1997; Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272:23765–23768 [CrossRef]
    [Google Scholar]
  116. Sears H., Ferguson S. J., Richardson D. J., Spiro S. 1993; The identification of a periplasmic nitrate reductase in Paracoccus denitrificans. FEMS Microbiol Lett 113:107–112 [CrossRef]
    [Google Scholar]
  117. Sears H. J., Little P. J., Richardson D. J., Berks B. C., Spiro S., Ferguson S. J. 1997a; Identification of an assimilatory nitrate reductase in mutants of Paracoccus denitrificans GB17 deficient on nitrate respiration. Arch Microbiol 167:61–66 [CrossRef]
    [Google Scholar]
  118. Sears H., Spiro S., Richardson D. J. 1997b; Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane-bound nitrate reductases in carbon-limited continuous cultures of Paracoccus denitrificans. Microbiology 143:3767–3774 [CrossRef]
    [Google Scholar]
  119. Shaw A. L., Hochkoeppler A., Bonora P., Zannoni D., Hanson G. R., McEwan A. G. 1999; Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethyl sulfoxide reductase. J Biol Chem 274:9911–9914 [CrossRef]
    [Google Scholar]
  120. Siddiqui R. A., Warnecke-Eberz U., Hengsberger A., Schneider B., Kostka S., Friedrich B. 1993; Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol 175:5867–5876
    [Google Scholar]
  121. Simoes P., Matias P. M., Morais J., Wilson K., Dauter Z., Carrondo M. A. 1998; Refinement of the three dimensional structure of cytochromes c 3 from Desulfovibrio vulgaris Hildenberg at 1·67 angstrom resolution and Desulfovibrio desulfuricans ATCC 27772 at 1·6 angstrom resolution. Inorg Chim Acta 273:213–224 [CrossRef]
    [Google Scholar]
  122. Spector M. P., Garcia del Portillo F., Bearson S. M. D., Mahmud A., Magut M., Finlay B. B., Dougan G., Foster J. W., Pallen M. J. 1999; The rpoS-dependent starvation-stress reponse locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiology 145:3035–3045
    [Google Scholar]
  123. Sugio T., Hirose T., Ye L. Z., Tano T. 1992; Purification and some properties of sulfite:ferric ion oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol 174:4189–4192
    [Google Scholar]
  124. Takamiya K., Arata H., Shioi Y., Doi M. 1988; Restoration of the optimal redox state for the photosynthetic electron transport system by auxilliary oxidants in an aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. Biochim Biophys Acta 935:26–33 [CrossRef]
    [Google Scholar]
  125. Tanapongpipat S., Reid E., Cole J. A., Crooke H. 1998; Transcriptional control and essential roles of the Escherichia coli ccm gene products in formate-dependent nitrite reduction and cytochrome c synthesis. Biochem J 334:355–365
    [Google Scholar]
  126. Taylor P., Pealing S., Reid G. A., Chapman S. K., Walkinshaw M. D. 1999; Structural and mechanistic mapping of a unique fumarate reductase. Nat Struct Biol 6:1108–1112 [CrossRef]
    [Google Scholar]
  127. Thauer R. K. 1998; Biochemistry of methanogens: a tribute to Marjory Stephenson. Microbiology 144:2377–2406 [CrossRef]
    [Google Scholar]
  128. Tomb J. F., White O., Kerlavage A. R.41 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547 [CrossRef]
    [Google Scholar]
  129. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R. 1998; Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67 [CrossRef]
    [Google Scholar]
  130. Volkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926
    [Google Scholar]
  131. Wang H., Tseng C. P., Gunsalus R. P. 1999; The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite. J Bacteriol 181:5303–5308
    [Google Scholar]
  132. Watmough N. J., Cheesman M. R., Butler C. S., Little R. H., Greenwood C., Thomson A. J. 1998; The dinuclear center of cytochrome bo 3 from Escherichia coli. J Bioenerg Biomembr 30:55–62 [CrossRef]
    [Google Scholar]
  133. Watmough N. J., Butland G., Cheesman M. R., Moir J. W., Richardson D. J., Spiro S. 1999; Nitric oxide in bacteria: synthesis and consumption. Biochim Biophys Acta 1411:456–474 [CrossRef]
    [Google Scholar]
  134. Way S. S., Sallustio S., Magliozzo R. S., Goldberg M. B. 1999; Impact of either increased or decreased levels of cytochrome bd expression on Shigella flexinera virulence. J Bacteriol 181:1229–1237
    [Google Scholar]
  135. Zumft W. G. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-551
Loading
/content/journal/micro/10.1099/00221287-146-3-551
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error