1887

Abstract

The antifungal metabolite 2,4-diacetylphloroglucinol plays a major role in the biocontrol capabilities of . The phloroglucinol biosynthetic locus of F113 has been isolated previously. From nucleotide sequence data, a putative regulator gene () was identified upstream and divergently transcribed from the phloroglucinol biosynthetic genes. PhlF shows similarity to various transcriptional repressors in the EMBL database and exhibits a helix–turn–helix motif in its amino acid sequence. was cloned into an expression vector and the PhlF protein product was purified. Gel retardation experiments demonstrated PhlF to be a DNA-binding protein and showed that it binds to the intergenic region. Introduction of into F113 in multiple copies resulted in repression of phloroglucinol production in this strain. This effect was mediated at the transcription level since the expression of a phloroglucinol biosynthetic gene fusion in this background was equally repressed. Furthermore, the inactivation of results in derepression of phloroglucinol production in this strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-537
2000-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460537a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-537&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403-410.[CrossRef]
    [Google Scholar]
  2. Bangera, M. G. & Thomashow, L. S. ( 1996; ). Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant–Microbe Interact 9, 83-90.[CrossRef]
    [Google Scholar]
  3. Bonsall, R. F., Weller, D. W. & Thomashow, L. S. ( 1997; ). Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 63, 951-955.
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef]
    [Google Scholar]
  5. Brazil, G. M., Kenefick, L., Callanan, M., Haro, A., de Lorenzo, V., Dowling, D. N. & O’Gara, F. ( 1995; ). Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61, 1946-1952.
    [Google Scholar]
  6. Brennan, R. G. & Matthews, B. W. ( 1989; ). The helix–turn–helix binding motif. J Biol Chem 264, 1903-1906.
    [Google Scholar]
  7. Casey, C. E., O’Sullivan, O. B., O’Gara, F. & Glennon, J. D. ( 1998; ). Ion chromatographic analysis of nutrients in seed exudate for microbial colonisation. J Chromatogr A 804, 311-318.[CrossRef]
    [Google Scholar]
  8. Castric, K. F. & Castric, P. A. ( 1983; ). Method for rapid detection of cyanogenic bacteria. Appl Environ Microbiol 45, 701-702.
    [Google Scholar]
  9. Chen, W. P. & Kuo, T. T. ( 1993; ). A simple and rapid method for the preparation of Gram-negative genomic DNA. Nucleic Acids Res 21, 2260-2261.[CrossRef]
    [Google Scholar]
  10. Cook, R. J. ( 1993; ). Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31, 53-80.[CrossRef]
    [Google Scholar]
  11. Cook, R. J., Thomashow, L. S., Weller, D. W., Fujimoto, D., Mazzola, M., Bangera, G. & Kim, D. ( 1995; ). Molecular mechanisms of defence by rhizobacteria against root disease. Proc Natl Acad Sci USA 92, 4197-4201.[CrossRef]
    [Google Scholar]
  12. Corbell, N. & Loper, J. E. ( 1995; ). A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol 177, 6230-6236.
    [Google Scholar]
  13. Dowling, D. N. & O’Gara, F. ( 1994; ). Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12, 1-8.[CrossRef]
    [Google Scholar]
  14. Dunne, C., Delany, I., Fenton, A. & O’Gara, F. ( 1996; ). Mechanisms involved in biocontrol by microbial inoculants. Agronomie 16, 721-729.[CrossRef]
    [Google Scholar]
  15. Ebbole, D. W. & Zalkin, H. ( 1989; ). Interaction of a putative repressor protein with an extended control region of the Bacillus subtilis pur operon. J Biol Chem 264, 3553-3561.
    [Google Scholar]
  16. Farinha, M. A. & Kropinski, A. M. ( 1990; ). High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiol Lett 70, 221-226.
    [Google Scholar]
  17. Fenton, A. M., Stephens, P. M., Crowley, J., O’Callaghan, M. & O’Gara, F. ( 1992; ). Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 58, 3873-3878.
    [Google Scholar]
  18. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76, 1648-1652.[CrossRef]
    [Google Scholar]
  19. Gottesman, S., Halpern, E. & Trisler, P. ( 1981; ). Role of sulA and sulB in filamentation by ion mutants of Escherichia coli K-12. J Bacteriol 148, 265-273.
    [Google Scholar]
  20. Hansen, L. T., McMurry, L. M., Levy, S. B. & Hirsch, D. C. ( 1993; ). Pasteurella multocida specifying active efflux of tetracycline. Antimicrob Agents Chemother 37, 2699-2705.[CrossRef]
    [Google Scholar]
  21. Hinrichs, W., Kisker, C., Duvel, M., Muller, A., Tovar, K., Hillen, W. & Saenger, W. ( 1994; ). Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264, 418-420.[CrossRef]
    [Google Scholar]
  22. Hopwood, D. A. & Sherman, D. H. ( 1990; ). Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24, 37-66.[CrossRef]
    [Google Scholar]
  23. Keel, C., Wirthner, P. H., Oberhansli, T. H., Voisard, C., Burger, U., Haas, D. & Defago, G. ( 1990; ). Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9, 327-342.
    [Google Scholar]
  24. Keel, C., Weller, D. M., Natsch, A., Défago, G., Cook, R. J. & Thomashow, L. S. ( 1996; ). Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62, 552-563.
    [Google Scholar]
  25. Kondo, S., Yasui, K., Natsume, M., Katayama, M. & Marumo, S. ( 1988; ). Isolation, physico-chemical properties and biological activity of pamamycin-607, an aerial mycelium-inducing substance from Streptomyces alboniger. J Antibiot 41, 1196-1204.[CrossRef]
    [Google Scholar]
  26. Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, R. M.II & Peterson, K. M. ( 1994; ). pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16, 800-802.
    [Google Scholar]
  27. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  28. Levy, E., Gough, F. J., Berlin, K. D., Guiana, P. W. & Smith, J. T. ( 1992; ). Inhibition of Septoria tritici and other phytopathogenic fungi and bacteria by Pseudomonas fluorescens and its antibiotics. Plant Pathol 41, 335-341.[CrossRef]
    [Google Scholar]
  29. Loper, J. E. ( 1988; ). Role of fluorescent siderophore in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78, 166-172.[CrossRef]
    [Google Scholar]
  30. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Postle, K., Nguyen, T. T. & Bertrand, K. P. ( 1984; ). Nucleotide sequence of the repressor gene of the Tn10 tetracycline resistance determinant. Nucleic Acids Res 12, 4849-4863.[CrossRef]
    [Google Scholar]
  32. Pridmore, R. D. ( 1987; ). New and versatile cloning vectors with kanamycin resistance marker. Gene 56, 309-312.[CrossRef]
    [Google Scholar]
  33. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Scher, F. M. & Baker, R. ( 1982; ). Effects of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72, 1567-1573.[CrossRef]
    [Google Scholar]
  35. Schwecke, T., Aparicio, J. F., Molnar, I. & 10 other authors ( 1995; ). The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci USA 92, 7839–7843.[CrossRef]
    [Google Scholar]
  36. Shanahan, P., O’Sullivan, D. J., Simpson, P., Glennon, G. & O’Gara, F. ( 1992; ). Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58, 353-358.
    [Google Scholar]
  37. Shanahan, P., Glennon, J. D., Crowley, J. J., Donnelly, D. F. & O’Gara, F. ( 1993; ). Liquid chromatographic assay of microbially derived phloroglucinol antibiotics for establishing the biosynthetic route to production and the factors affecting their regulation. Anal Chim Acta 272, 271-277.[CrossRef]
    [Google Scholar]
  38. Shaw, G. C. & Fulco, A. J. ( 1992; ). Barbiturate-mediated regulation of expression of the cytochrome P450Bm-3 gene of Bacillus megaterium by Bm3R protein. J Biol Chem 267, 5515-5526.
    [Google Scholar]
  39. Spaink, H. P., Okker, R. J. H., Wiffelman, C. A., Pees, E. & Lugtenberg, E. J. J. ( 1987; ). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1J1. Plant Mol Biol 9, 27-39.[CrossRef]
    [Google Scholar]
  40. Stutz, E. W., Defago, G. & Kern, H. ( 1986; ). Naturally occurring fluorescent pseudomonads involved in the suppression of black root rot of tobacco. Phytopathology 76, 181-185.[CrossRef]
    [Google Scholar]
  41. Thomashow, L. S., Bangera, M. G., Bonsall, R. F., Kim, D. S., Raaijmakers, J. & Weller, D. M. (1997). 2,4-Diacetylphloroglucinol, a key antibiotic in soilborne pathogen suppression by fluorescent Pseudomonas spp. In Biology of Plant–Microbe Interactions. Edited by G. Stacey, B. Mullin & P. M. Gresshoff. Proceedings of the 8th International Symposium on Molecular Plant–Microbe Interactions, Knoxville, TN, USA.
  42. Vincent, M. N., Harrison, L. A., Brackin, J. M., Kovacevich, P. A., Mukerji, P., Weller, D. M. & Pierson, E. A. ( 1991; ). Genetic evidence of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Environ Microbiol 57, 2928-2934.
    [Google Scholar]
  43. Weller, D. ( 1988; ). Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26, 379-407.[CrossRef]
    [Google Scholar]
  44. Weller, D. M. & Cook, R. J. ( 1983; ). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73, 463-469.[CrossRef]
    [Google Scholar]
  45. Yang, K., Han, L. & Vining, L. C. ( 1995; ). Regulation of jadomycin B production in Streptomyces venezuelae ISP5230: involvement of a repressor gene, jadR2. J Bacteriol 177, 6111-6117.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-537
Loading
/content/journal/micro/10.1099/00221287-146-2-537
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error