1887

Abstract

The causative agent of gas gangrene, , is a Gram-positive anaerobe which produces a number of extracellular toxins and enzymes. The production of several of these toxins is regulated by the VirS/VirR two-component signal transduction system. The sensor histidine kinase, VirS, contains motifs that are conserved amongst sensor histidine kinases, although not in the same relative positions. In this study, the conserved histidine residue (H255), the GXGL and DXGXG motifs, and two glutamate residues located in putative transmembrane domains were altered by site-directed mutagenesis to examine their significance for VirS function. Introduction of the mutated genes into the ::Tn mutant, JIR4000, showed that the altered genes were not able to complement the host mutation. These results demonstrate that the conserved motifs, including the cytoplasmic DXGXG motif which is located between the putative transmembrane domains 4 and 5, are functional. Furthermore, it is concluded that charged residues located within two of these transmembrane domains are also required for the structural or functional integrity of the VirS sensor kinase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-517
2000-02-01
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460517a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-517&mimeType=html&fmt=ahah

References

  1. Albright L. M., Huala E., Ausubel F. M. 1989; Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu Rev Genet 23:311–336 [CrossRef]
    [Google Scholar]
  2. Awad M. M., Bryant A. E., Stevens D. L., Rood J. I. 1995; Virulence studies on chromosomal α-toxin and θ-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol 15:191–202 [CrossRef]
    [Google Scholar]
  3. Ba-Thein W., Lyristis M., Ohtani K., Nisbet I. T., Hayashi H., Rood J. I., Shimizu T. 1996; The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol 178:2514–2520
    [Google Scholar]
  4. Bannam T. L., Rood J. I. 1993; Clostridium perfringens-Escherichia coli shuttle vectors that carry single antibiotic resistance determinants. Plasmid 29:223–235
    [Google Scholar]
  5. Bilwes A. M., Alex L. A., Crane B. R., Simon M. I. 1999; Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141 [CrossRef]
    [Google Scholar]
  6. Chervitz S. A., Falke J. J. 1996; Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc Natl Acad Sci USA 93:2545–2550 [CrossRef]
    [Google Scholar]
  7. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686
    [Google Scholar]
  8. Deng W. P., Nickoloff J. A. 1992; Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem 200:81–88 [CrossRef]
    [Google Scholar]
  9. Falke J. J., Bass R. B., Butler S. L., Chervitz S. A., Danielson M. A. 1997; The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13:457–512 [CrossRef]
    [Google Scholar]
  10. Hanahan D. 1985; Techniques for transformation of E. coli. In DNA Cloning: a Practical Approach pp. 109–135Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  11. Hess J. F., Bourret R. B., Simon M. I. 1988; Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature 336:139–143 [CrossRef]
    [Google Scholar]
  12. Hsing W., Russo F. D., Bernd K. K., Silhavy T. J. 1998; Mutations that alter the kinase and phosphatase activities of the two-component sensor EnvZ. J Bacteriol 180:4538–4546
    [Google Scholar]
  13. Island M. D., Kadner R. J. 1993; Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J Bacteriol 175:5028–5034
    [Google Scholar]
  14. Island M. D., Wei B.-Y., Kadner R. J. 1992; Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol 174:2754–2762
    [Google Scholar]
  15. Jin S., Roitsch T., Ankenbauer R. G., Gordon M. P., Nester E. W. 1990; The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol 172:525–530
    [Google Scholar]
  16. Kanamaru K., Aiba H., Mizuno T. 1990; Transmembrane signal transduction and osmoregulation in Escherichia coli. I. Analysis by site-directed mutagenesis of the amino acid residues involved in phosphotransfer between the two regulatory components, EnvZ and OmpR. J Biochem 108:483–487
    [Google Scholar]
  17. La Fontaine S., Rood J. I. 1996; Organization of ribosomal RNA genes from the footrot pathogen Dichelobacter nodosus. Microbiology 142:889–899 [CrossRef]
    [Google Scholar]
  18. Lee J.-I., Hwang P. P., Hansen C., Wilson T. H. 1992; Possible salt bridges between transmembrane α-helices of the lactose carrier of Escherichia coli. J Biol Chem 267:20758–20764
    [Google Scholar]
  19. Lina G., Jarraud S., Ji G., Greenland T., Pedraza A., Etienne J., Novick R. P., Vendenesch F. 1998; Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol Microbiol 28:655–662 [CrossRef]
    [Google Scholar]
  20. Lyristis M. 1996 Identification and molecular analysis of the virR/virS regulatory locus from Clostridium perfringens PhD thesis Monash University;
    [Google Scholar]
  21. Lyristis M., Bryant A. E., Sloan J., Awad M. M., Nisbet I. T., Stevens D. L., Rood J. I. 1994; Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol Microbiol 12:761–777 [CrossRef]
    [Google Scholar]
  22. Morelle G. 1989; A plasmid extraction procedure on a miniprep scale. Focus 11:7–8
    [Google Scholar]
  23. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  24. Rood J. I. 1983; Transferable tetracycline resistance in Clostridium perfringens strains of porcine origin. Can J Microbiol 29:1241–1246 [CrossRef]
    [Google Scholar]
  25. Rood J. I., Cole S. T. 1991; Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Rev 55:621–648
    [Google Scholar]
  26. Rood J. I., Lyristis M. 1995; Regulation of extracellular toxin production in Clostridium perfringens. Trends Microbiol 3:192–195 [CrossRef]
    [Google Scholar]
  27. Rood J. I., Maher E. A., Somer E. B., Campos E., Duncan C. L. 1978; Isolation and characterization of multiple antibiotic-resistant Clostridium perfringens strains from porcine feces. Antimicrob Agents Chemother 13:871–880 [CrossRef]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Scott P. T., Rood J. I. 1989; Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene 82:327–333 [CrossRef]
    [Google Scholar]
  30. Shimizu T., Ba-Thein W., Tamaki M., Hayashi H. 1994; The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J Bacteriol 176:1616–1623
    [Google Scholar]
  31. Smith M., Jessee J., Landers T., Jordan J. 1990; High efficiency bacterial electroporation: 1×1010 E. coli transformants/mg. Focus 12:38–40
    [Google Scholar]
  32. Stevens D. L., Mitten J., Henry C. 1987; Effects of α and θ toxins from Clostridium perfringens on human polymorphonuclear leukocytes. J Infect Dis 156:324–333 [CrossRef]
    [Google Scholar]
  33. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  34. Stock J. B., Surette M. G., Levit M., Park P. 1995; Two-component signal transduction systems: structure-function relationships and mechanisms of catalysis. In Two-Component Signal Transduction pp. 25–51Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Tanaka T., Saha S. K., Tomomori C.12 other authors 1998; NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 396:88–92 [CrossRef]
    [Google Scholar]
  36. Tokishita S., Mizuno T. 1994; Transmembrane signal transduction by the Escherichia coli osmotic sensor, EnvZ: intermolecular complementation of transmembrane signaling. Mol Microbiol 13:435–444 [CrossRef]
    [Google Scholar]
  37. Uhl M. A., Miller J. F. 1994; Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc Natl Acad Sci USA 91:1163–1167 [CrossRef]
    [Google Scholar]
  38. Weinrauch Y., Penchev R., Dubnau E., Smith I., Dubnau D. 1990; A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev 4:860–872 [CrossRef]
    [Google Scholar]
  39. Yang Y., Inouye M. 1991; Intermolecular complementation between two defective mutant signal-transducing receptors of Escherichia coli. Proc Natl Acad Sci USA 88:11057–11061 [CrossRef]
    [Google Scholar]
  40. Yang Y., Inouye M. 1993; Requirement of both kinase and phosphatase activities of an Escherichia coli receptor (Taz1) for ligand-dependent signal transduction. J Mol Biol 231:335–342 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-146-2-517
Loading
/content/journal/micro/10.1099/00221287-146-2-517
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error