1887

Abstract

The causative agent of gas gangrene, , is a Gram-positive anaerobe which produces a number of extracellular toxins and enzymes. The production of several of these toxins is regulated by the VirS/VirR two-component signal transduction system. The sensor histidine kinase, VirS, contains motifs that are conserved amongst sensor histidine kinases, although not in the same relative positions. In this study, the conserved histidine residue (H255), the GXGL and DXGXG motifs, and two glutamate residues located in putative transmembrane domains were altered by site-directed mutagenesis to examine their significance for VirS function. Introduction of the mutated genes into the ::Tn mutant, JIR4000, showed that the altered genes were not able to complement the host mutation. These results demonstrate that the conserved motifs, including the cytoplasmic DXGXG motif which is located between the putative transmembrane domains 4 and 5, are functional. Furthermore, it is concluded that charged residues located within two of these transmembrane domains are also required for the structural or functional integrity of the VirS sensor kinase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-517
2000-02-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460517a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-517&mimeType=html&fmt=ahah

References

  1. Albright L. M., Huala E., Ausubel F. M.. 1989; Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu Rev Genet23:311–336[CrossRef]
    [Google Scholar]
  2. Awad M. M., Bryant A. E., Stevens D. L., Rood J. I.. 1995; Virulence studies on chromosomal α-toxin and θ-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol15:191–202[CrossRef]
    [Google Scholar]
  3. Ba-Thein W., Lyristis M., Ohtani K., Nisbet I. T., Hayashi H., Rood J. I., Shimizu T.. 1996; The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol178:2514–2520
    [Google Scholar]
  4. Bannam T. L., Rood J. I.. 1993; Clostridium perfringens-Escherichia coli shuttle vectors that carry single antibiotic resistance determinants. Plasmid29:223–235
    [Google Scholar]
  5. Bilwes A. M., Alex L. A., Crane B. R., Simon M. I.. 1999; Structure of CheA, a signal-transducing histidine kinase. Cell96:131–141[CrossRef]
    [Google Scholar]
  6. Chervitz S. A., Falke J. J.. 1996; Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc Natl Acad Sci USA93:2545–2550[CrossRef]
    [Google Scholar]
  7. Claros M. G., von Heijne G.. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci10:685–686
    [Google Scholar]
  8. Deng W. P., Nickoloff J. A.. 1992; Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem200:81–88[CrossRef]
    [Google Scholar]
  9. Falke J. J., Bass R. B., Butler S. L., Chervitz S. A., Danielson M. A.. 1997; The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol13:457–512[CrossRef]
    [Google Scholar]
  10. Hanahan D.. 1985; Techniques for transformation of E. coli. In DNA Cloning: a Practical Approach pp.109–135Edited by Glover D. M.. Oxford: IRL Press;
    [Google Scholar]
  11. Hess J. F., Bourret R. B., Simon M. I.. 1988; Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature336:139–143[CrossRef]
    [Google Scholar]
  12. Hsing W., Russo F. D., Bernd K. K., Silhavy T. J.. 1998; Mutations that alter the kinase and phosphatase activities of the two-component sensor EnvZ. J Bacteriol180:4538–4546
    [Google Scholar]
  13. Island M. D., Kadner R. J.. 1993; Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J Bacteriol175:5028–5034
    [Google Scholar]
  14. Island M. D., Wei B.-Y., Kadner R. J.. 1992; Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol174:2754–2762
    [Google Scholar]
  15. Jin S., Roitsch T., Ankenbauer R. G., Gordon M. P., Nester E. W.. 1990; The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol172:525–530
    [Google Scholar]
  16. Kanamaru K., Aiba H., Mizuno T.. 1990; Transmembrane signal transduction and osmoregulation in Escherichia coli. I. Analysis by site-directed mutagenesis of the amino acid residues involved in phosphotransfer between the two regulatory components, EnvZ and OmpR. J Biochem108:483–487
    [Google Scholar]
  17. La Fontaine S., Rood J. I.. 1996; Organization of ribosomal RNA genes from the footrot pathogen Dichelobacter nodosus. Microbiology142:889–899[CrossRef]
    [Google Scholar]
  18. Lee J.-I., Hwang P. P., Hansen C., Wilson T. H.. 1992; Possible salt bridges between transmembrane α-helices of the lactose carrier of Escherichia coli. J Biol Chem267:20758–20764
    [Google Scholar]
  19. Lina G., Jarraud S., Ji G., Greenland T., Pedraza A., Etienne J., Novick R. P., Vendenesch F.. 1998; Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol Microbiol28:655–662[CrossRef]
    [Google Scholar]
  20. Lyristis M.. 1996; Identification and molecular analysis of the virR/virS regulatory locus from Clostridium perfringens PhD thesis Monash University;
    [Google Scholar]
  21. Lyristis M., Bryant A. E., Sloan J., Awad M. M., Nisbet I. T., Stevens D. L., Rood J. I.. 1994; Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol Microbiol12:761–777[CrossRef]
    [Google Scholar]
  22. Morelle G.. 1989; A plasmid extraction procedure on a miniprep scale. Focus11:7–8
    [Google Scholar]
  23. Parkinson J. S., Kofoid E. C.. 1992; Communication modules in bacterial signaling proteins. Annu Rev Genet26:71–112[CrossRef]
    [Google Scholar]
  24. Rood J. I.. 1983; Transferable tetracycline resistance in Clostridium perfringens strains of porcine origin. Can J Microbiol29:1241–1246[CrossRef]
    [Google Scholar]
  25. Rood J. I., Cole S. T.. 1991; Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Rev55:621–648
    [Google Scholar]
  26. Rood J. I., Lyristis M.. 1995; Regulation of extracellular toxin production in Clostridium perfringens. Trends Microbiol3:192–195[CrossRef]
    [Google Scholar]
  27. Rood J. I., Maher E. A., Somer E. B., Campos E., Duncan C. L.. 1978; Isolation and characterization of multiple antibiotic-resistant Clostridium perfringens strains from porcine feces. Antimicrob Agents Chemother13:871–880[CrossRef]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Scott P. T., Rood J. I.. 1989; Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene82:327–333[CrossRef]
    [Google Scholar]
  30. Shimizu T., Ba-Thein W., Tamaki M., Hayashi H.. 1994; The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J Bacteriol176:1616–1623
    [Google Scholar]
  31. Smith M., Jessee J., Landers T., Jordan J.. 1990; High efficiency bacterial electroporation: 1×1010 E. coli transformants/mg. Focus12:38–40
    [Google Scholar]
  32. Stevens D. L., Mitten J., Henry C.. 1987; Effects of α and θ toxins from Clostridium perfringens on human polymorphonuclear leukocytes. J Infect Dis156:324–333[CrossRef]
    [Google Scholar]
  33. Stock J. B., Ninfa A. J., Stock A. M.. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev53:450–490
    [Google Scholar]
  34. Stock J. B., Surette M. G., Levit M., Park P.. 1995; Two-component signal transduction systems: structure-function relationships and mechanisms of catalysis. In Two-Component Signal Transduction pp.25–51Edited by Hoch J. A., Silhavy T. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Tanaka T., Saha S. K., Tomomori C..12 other authors 1998; NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature396:88–92[CrossRef]
    [Google Scholar]
  36. Tokishita S., Mizuno T.. 1994; Transmembrane signal transduction by the Escherichia coli osmotic sensor, EnvZ: intermolecular complementation of transmembrane signaling. Mol Microbiol13:435–444[CrossRef]
    [Google Scholar]
  37. Uhl M. A., Miller J. F.. 1994; Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc Natl Acad Sci USA91:1163–1167[CrossRef]
    [Google Scholar]
  38. Weinrauch Y., Penchev R., Dubnau E., Smith I., Dubnau D.. 1990; A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev4:860–872[CrossRef]
    [Google Scholar]
  39. Yang Y., Inouye M.. 1991; Intermolecular complementation between two defective mutant signal-transducing receptors of Escherichia coli. Proc Natl Acad Sci USA88:11057–11061[CrossRef]
    [Google Scholar]
  40. Yang Y., Inouye M.. 1993; Requirement of both kinase and phosphatase activities of an Escherichia coli receptor (Taz1) for ligand-dependent signal transduction. J Mol Biol231:335–342[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-517
Loading
/content/journal/micro/10.1099/00221287-146-2-517
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error