1887

Abstract

The gene for cytochrome nitrite reductase of , a protein of known crystal structure, is . This gene is shown to be flanked by genes previously recognized in other organisms to encode proteins involved in the control of its transcription () and the biosynthesis of the cofactor (). Northern blot analysis has established under anaerobic conditions that a monocistronic transcript is produced from , in contrast to observations with other denitrifying bacteria in which arrangement of flanking genes is different and the messages produced are polycistronic. The lack of a transcript under aerobic conditions argues against a role for cytochrome in the previously proposed aerobic denitrification pathway in . A putative rho-independent transcription termination sequence immediately following , and preceding , can be identified. The independent transcription of and indicates that it should be possible to produce site-directed mutants of borne on a plasmid in a deletion mutant. The transcript start point for has been determined by two complementary techniques, 5′-RACE (apid mplification of DNA 5′ nds) and primer extension. It is 29 bp upstream of the AUG of . An anaerobox, which presumably binds Nnr, is centred a further 415 bp upstream of the transcript start. No standard σ DNA sequence motifs can be identified, but a conserved sequence (T-T-G/C-C-G/C-G/C) can be found in approximately the same position (−16) upstream of the transcript starts of and , whose products are both involved in the conversion of nitrite to nitric oxide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-509
2000-02-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460509a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-509&mimeType=html&fmt=ahah

References

  1. Arai H., Kodama T., Igarashi Y.. 1997; Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol Microbiol25:1141–1148[CrossRef]
    [Google Scholar]
  2. Arai H., Kodama T., Igarashi Y.. 1999; Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa. FEMS Microbiol Lett170:19–24[CrossRef]
    [Google Scholar]
  3. Arts P. A. M., Robertson L. A., Kuenen J. G.. 1995; Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures. FEMS Microbiol Ecol18:305–315[CrossRef]
    [Google Scholar]
  4. Baker S. C., Saunders N. F. W., Willis A. C., Ferguson S. J., Hajdu J., Fülöp V.. 1997; Cytochrome cd 1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds. J Mol Biol269:440–455[CrossRef]
    [Google Scholar]
  5. Baker S. C., Ferguson S. J., Ludwig B., Page M. L. D., Richter O. H. M., van Spanning R. J. M.. 1998; Molecular biology of the genus Paracoccus. Microbiol Mol Biol Rev62:1046–1078
    [Google Scholar]
  6. Bartnikas T. B., Tosques I. E., Laratta W. P., Shi J., Shapleigh J. P.. 1997; Characterisation of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J Bacteriol179:3534–3540
    [Google Scholar]
  7. de Boer A. P. N., Reijnders W. N. M., Kuenen J. G., Stouthamer A. H., Spanning R. J. M.. 1994; Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Antonie Leeuwenhoek66:111–127[CrossRef]
    [Google Scholar]
  8. de Boer A. P. N., van der Oost J., Reijnders W. N. M., Westerhoff H. V., Stouthamer A. H., van Spanning R. J. M.. 1996; Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. Eur J Biochem242:592–600[CrossRef]
    [Google Scholar]
  9. Cuypers H., Zumft W. G.. 1993; Anaerobic control of denitrification in Pseudomonas stutzeri escapes mutagenesis of an fnr-like gene. J Bacteriol175:7236–7246
    [Google Scholar]
  10. Engler-Blum G., Meier M., Frank J., Müller G. A.. 1993; Reduction of background problems in non-radioactive Northern and Southern blot analyses enables higher sensitivity than 32P-based hybridisations. Anal Biochem210:235–244[CrossRef]
    [Google Scholar]
  11. Ferguson S. J.. 1994; Denitrification and its control. Antonie Leeuwenhoek66:89–110[CrossRef]
    [Google Scholar]
  12. Frohman M. A.. 1993; Rapid amplification of complementary DNA ends for generation of full-length complementary cDNAs: thermal RACE. Methods Enzymol218:340–356
    [Google Scholar]
  13. Fülöp V., Moir J. W. B., Ferguson S. J., Hajdu J.. 1995; The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd 1. Cell81:369–377[CrossRef]
    [Google Scholar]
  14. Gregory S., O’Connor M., Dahlberg A.. 1996; Functional Escherichia coli 23S rRNAs containing processed and unprocessed intervening sequences from Salmonella typhimurium. Nucleic Acids Res24:4918–4923[CrossRef]
    [Google Scholar]
  15. Gunsalus R. P., Park S. J.. 1994; Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol145:437–450[CrossRef]
    [Google Scholar]
  16. Härtig E., Zumft W. G.. 1999; Kinetics of nirS expression (cytochrome cd 1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system. J Bacteriol181:161–166
    [Google Scholar]
  17. Hasegawa N., Arai H., Igarashi Y.. 1998; Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. FEMS Microbiol Lett166:213–217[CrossRef]
    [Google Scholar]
  18. Hawley D. K., McClure W. R.. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res11:2237–2255[CrossRef]
    [Google Scholar]
  19. Jüngst A., Wakabayashi S., Matsubara H., Zumft W. G.. 1991; The nirSTBM region coding for cytochrome cd 1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett279:205–209[CrossRef]
    [Google Scholar]
  20. Kawasaki S., Arai H., Kodama T., Igarashi Y.. 1997; Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: sequencing and identification of a locus for heme d 1 biosynthesis. J Bacteriol179:235–242
    [Google Scholar]
  21. Khoroshilova N., Beinert H., Kiley P. J.. 1995; Association of a polynuclear iron-sulfur center with a mutant FNR protein enhances DNA binding. Proc Natl Acad Sci USA92:2499–2503[CrossRef]
    [Google Scholar]
  22. Moir J. W. B., Baratta D., Richardson D. J., Ferguson S. J.. 1993; The purification of a cd 1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. Eur J Biochem212:377–385[CrossRef]
    [Google Scholar]
  23. Moir J. W. B., Richardson D. J., Ferguson S. J.. 1995; The expression of redox proteins of denitrification in Thiosphaera pantotropha grown with oxygen, nitrate, and nitrous-oxide as electron-acceptors. Arch Microbiol164:43–49[CrossRef]
    [Google Scholar]
  24. Ohshima T., Sugiyama M., Uozumi N., Iijima S., Kobayashi T.. 1993; Cloning and sequencing of a gene encoding nitrite reductase from Paracoccus denitrificans and expression of the gene in Escherichia coli. J Ferment Bioeng76:82–88[CrossRef]
    [Google Scholar]
  25. Rainey F. A., Kelly D. P., Stackebrandt E., Burghardt J., Hiraishi A., Katayama Y., Wood A. P.. 1999; A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the creation of Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol49:645–651[CrossRef]
    [Google Scholar]
  26. Rees E., Siddiqui R. A., Köster F., Schneider B., Friedrich B.. 1997; Structural gene (nirS) for the cytochrome cd 1 nitrite reductase of Alcaligenes eutrophus H16. Appl Environ Microbiol63:800–802
    [Google Scholar]
  27. Robertson L. A., Kuenen J. G.. 1983; Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J Gen Microbiol129:2847–2855
    [Google Scholar]
  28. Robertson L. A., Dalsgaard T., Revsbech N. P., Kuenen J. G.. 1995; Confirmation of aerobic denitrification in batch cultures, using gas-chromatography and N-15 mass-spectrometry. FEMS Microbiol Ecol18:113–119[CrossRef]
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Saunders N. F. W., Houben E. N. G., Koefoed S., de Weert S., Reijnders W. N. M., Westerhoff H. V., De Boer A. P. N., van Spanning R. J. M.. 1999; Transcription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and NirI, a novel type of membrane protein. Mol Microbiol34:24–36[CrossRef]
    [Google Scholar]
  31. Sears H. J., Spiro S., Richardson D. J.. 1997; Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane-bound nitrate reductases in carbon-limited continuous cultures of Paracoccus denitrificans Pd1222. Microbiology143:3767–3774[CrossRef]
    [Google Scholar]
  32. Silvestrini M. C., Galeotti C. L., Gervais M., Schininà E., Barra D., Bossa F., Brunori M.. 1989; Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and the protein. FEBS Lett254:33–38[CrossRef]
    [Google Scholar]
  33. Smith G. B., Tiedje J. M.. 1992; Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl Environ Microbiol58:376–384
    [Google Scholar]
  34. van Spanning R. J. M., de Boer A. P. N., Reijnders W. N. M., Westerhoff H. V., Stouthamer A. H., van der Oost J.. 1997; FnrP and Nnr of Paracoccus denitrificans are both members of the Fnr family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol Microbiol23:893–907[CrossRef]
    [Google Scholar]
  35. van Spanning R. J. M., Houben E., Reijnders W. M. N., Spiro S., Westerhoff H. V., Saunders N. F. W.. 1999; Nitric oxide is a signal for NNR-mediated transcription activation in Paracoccus denitrificans. J Bacteriol181:4129–4132
    [Google Scholar]
  36. Spiro S., Guest J. R.. 1990; FNR and its role in oxygen-regulated gene-expression in Escherichia coli. FEMS Microbiol Rev75:399–428
    [Google Scholar]
  37. Stouthamer A. H., de Boer A. P. N., van der Oost J., van Spanning R. J. M.. 1997; Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria. Antonie Leeuwenhoek71:33–41[CrossRef]
    [Google Scholar]
  38. Tosques I. E., Kwiatkowski A. V., Shi J., Shapleigh J. P.. 1997; Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol179:1090–1095
    [Google Scholar]
  39. Vollack K. U., Hartig E., Korner H., Zumft W. G.. 1999; Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Mol Microbiol31:1681–1694[CrossRef]
    [Google Scholar]
  40. Zumft W. G.. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev61:533–616
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-509
Loading
/content/journal/micro/10.1099/00221287-146-2-509
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error