1887

Abstract

Degenerate oligonucleotide primers based on internal peptide sequences obtained by HPLC from purified catalase were used to locate the and subsp. regions by PCR. Southern hybridization analysis with a probe derived from a 11 kb PCR-amplified fragment showed that a single copy of the putative catalase gene was present in the and subsp. chromosome. The nucleotide sequence of revealed a 1518 bp open reading frame for a protein with 505 amino acids and a predicted molecular mass of 58347 Da, whereas subsp. is 1368 nt long and encodes a polypeptide of 455 amino acids with a predicted molecular mass of 52584 Da. These catalases are highly homologous to typical monofunctional catalases from prokaryotes. The active-site residues, proximal and distal haem-binding ligands and NADPH-binding residues of the bovine liver catalase-type enzyme were highly conserved in KatA. cells carrying cloned had a catalase activity approximately 1000 times that of untransformed , but no detectable increase in catalase activity was observed with carrying cloned . Northern blotting showed the presence of a -specific transcript in subsp. , suggesting that the lack of catalase activity in this bacterium is due to a post-transcriptional alteration. Compared to the nucleotide sequence of , showed a single base-pair deletion and six mis-sense mutations, and these alterations were present in three other subsp. strains analysed. The deletion, located at 1338 bp from the initiation codon, originates a shift of the nucleotide reading frame and is responsible for the premature translation termination at 1368 bp, generating a KatB polypeptide 50 amino acid residues shorter than KatA. Moreover, four of the mis-sense mutations present in lead to non-conservative amino acid replacements, the most significant being that located at residue 317 (Pro in KatA→Ser in KatB) because the affected amino acid is involved in determining the proximal haem-binding site. Both the main alterations found in KatB (the deletion and the substitution in residue 317) seem to contribute to the lack of catalase activity in subsp. , as deduced from results obtained with chimeric catalase constructs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-465
2000-02-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460465a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-465&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1991). Current Protocols in Molecular Biology. New York: Wiley.
  2. Clare, D. A., Duong, M. N., Darr, D., Archibald, F. & Fridovich, I. ( 1984; ). Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem 140, 532-537.[CrossRef]
    [Google Scholar]
  3. De la Fuente, R. & Suarez, G. ( 1985; ). Respiratory deficient Staphylococcus aureus as the aetiological agent of ‘abscess disease’. Zentbl Vet Med B 32, 397-406.
    [Google Scholar]
  4. De la Fuente, R., Suarez, G. & Schleifer, K. H. ( 1985; ). Staphylococcus aureus subsp. anaerobius subsp. nov., the causal agent of abscess disease of sheep. Int J Syst Bacteriol 35, 99-102.[CrossRef]
    [Google Scholar]
  5. De la Fuente, R., Götz, F. & Shleifer, K. H. ( 1987; ). Comparative biochemical studies on aerobic mutants of Staphylococcus aureus subsp. anaerobius. Syst Appl Microbiol 9, 29-33.[CrossRef]
    [Google Scholar]
  6. De la Fuente, R., Ruiz Santa Quiteria, J. A., Cid, D., Domingo, M. & Suarez, G. ( 1993; ). Experimental intramammary infection of ewes with Staphylococcus aureus subsp anaerobius. Res Vet Sci 54, 221-226.[CrossRef]
    [Google Scholar]
  7. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef]
    [Google Scholar]
  8. Fita, I. & Rossmann, M. G. ( 1985a; ). Tha NADPH binding site on beef liver catalase. Proc Natl Acad Sci USA 82, 1604-1608.[CrossRef]
    [Google Scholar]
  9. Fita, I. & Rossmann, M. G. ( 1985b; ). The active center of catalase. J Mol Biol 185, 21-37.[CrossRef]
    [Google Scholar]
  10. Gouet, P., Jouve, H. M. & Dideberg, O. ( 1995; ). Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol 249, 933-954.[CrossRef]
    [Google Scholar]
  11. Haas, A. & Brehm, K. ( 1993; ). Superoxide dismutases and catalases: biochemistry, molecular biology and some biomedical aspects. Genet Eng Biotechnol 13, 243-269.
    [Google Scholar]
  12. Higuchi, R. ( 1989; ). Using PCR to engineer DNA. In PCR Technology. Principles and Applications for DNA Amplification, pp. 61-70. Edited by H. A. Erlich. New York: Macmillan.
  13. Horwitz, M. S. Z. & Loeb, L. A. ( 1990; ). Structure–function relationship in Escherichia coli promoter DNA. Prog Nucleic Acid Res Mol Biol 38, 137-164.
    [Google Scholar]
  14. Kanafani, H. & Martin, S. E. ( 1985; ). Catalase and superoxide dismutase activities in virulent and nonvirulent Staphylococcus aureus isolates. J Clin Microbiol 21, 607-610.
    [Google Scholar]
  15. Klotz, M. G., Klassen, G. R. & Loewen, P. C. ( 1997; ). Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol Biol Evol 14, 951-958.[CrossRef]
    [Google Scholar]
  16. Kornblum, J. S., Projan, S. J., Moghazeh, S. L. & Novick, R. P. ( 1988; ). A rapid method to quantitate nonlabeled RNA species in bacterial cells. Gene 63, 75-85.[CrossRef]
    [Google Scholar]
  17. Loewen, P. C. ( 1992; ). Regulation of bacterial catalase synthesis. In Molecular Biology of Free Radical Scavenging Systems, pp. 96-116. Edited by J. Scandalios. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Mandell, G. L. ( 1975; ). Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vivo and in vitro studies with emphasis on staphylococcal–leucocyte interaction. J Clin Invest 55, 561-566.[CrossRef]
    [Google Scholar]
  19. Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A., Borisov, V. V., Vainshtein, B. K., Fita, I., Murthy, M. R. N. & Rossmann, M. G. ( 1986; ). Comparison of beef liver and Penicillium vitale catalases. J Mol Biol 188, 63-72.[CrossRef]
    [Google Scholar]
  20. Murthy, M. R. N., Reid, T. J.III, Sicignano, A., Tanaka, N. & Rossmann, M. G. ( 1981; ). Structure of beef liver catalase. J Mol Biol 152, 465-499.[CrossRef]
    [Google Scholar]
  21. Rocha, E. R. & Smith, C. J. ( 1995; ). Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. J Bacteriol 177, 3111-3119.
    [Google Scholar]
  22. Ruiz Santa Quiteria, J. A., Cid, D., Bellahsene, R., Suarez, G. & De la Fuente, R. ( 1992; ). Polyclonal antibodies against Staphylococcus aureus ATCC 12600 catalase do not recognize any protein in cellular extracts from S. aureus subsp. anaerobius. FEMS Microbiol Lett 72, 173-176.
    [Google Scholar]
  23. Rupprecht, M. & Schleifer, K. H. ( 1979; ). A comparative immunological study of catalases from coagulase-positive staphylococci. Arch Microbiol 120, 53-56.[CrossRef]
    [Google Scholar]
  24. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef]
    [Google Scholar]
  26. Sinha, A. K. ( 1972; ). Colorimetric assay of catalase. Anal Biochem 47, 389-394.[CrossRef]
    [Google Scholar]
  27. Switala, J., Triggs-Raine, B. L. & Loewen, P. C. ( 1990; ). Homology among bacterial catalase genes. Can J Microbiol 36, 728-731.[CrossRef]
    [Google Scholar]
  28. Timoney, J. F., Gillespie, J. H., Scott, F. W. & Baslough, J. E. (1988). The staphylococci. In Hagan and Bruner’s Microbiology and Infectious Diseases of Domestic Animals, 8th edn, pp. 171–180. Ithaca & London: Comstock Publishing.
  29. Vandenesch, F., Lebeau, C., Bes, M., McDevitt, D., Greenland, T., Novick, R. P. & Etienne, J. ( 1994; ). Coagulase deficiency in clinical isolates of Staphylococcus aureus involves both transcriptional and post-transcriptional defects. J Med Microbiol 40, 344-349.[CrossRef]
    [Google Scholar]
  30. Von Ossowski, I., Hausner, G. & Loewen, P. C. ( 1993; ). Molecular evolutionary analysis based on the amino acid sequence of catalase. J Mol Evol 37, 71-76.[CrossRef]
    [Google Scholar]
  31. Wada, K., Wada, Y., Ishibashi, F., Gojobori, T. & Ikemura, T. ( 1992; ). Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res 20, 2111-2118.[CrossRef]
    [Google Scholar]
  32. Watson, D. L. ( 1988; ). Vaccination againts experimental staphylococcal mastitis in ewes. Res Vet Sci 45, 16-21.
    [Google Scholar]
  33. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13, mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-465
Loading
/content/journal/micro/10.1099/00221287-146-2-465
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error