1887

Abstract

The genes involved in the oxidative pathway of choline to glycine betaine in the moderate halophile DSM 3043 were isolated by functional complementation of an strain defective in glycine betaine synthesis. The cloned region was able to mediate the oxidation of choline to glycine betaine in , but not the transport of choline, indicating that the gene(s) involved in choline transport are not clustered with the glycine betaine synthesis genes. Nucleotide sequence analysis of a 46 kb segment from the cloned DNA revealed the occurrence of three ORFs () apparently arranged in an operon. The deduced gene product exhibited features typical for DNA-binding regulatory proteins. The deduced BetB and BetA proteins showed significant similarity to soluble glycine betaine aldehyde dehydrogenases and membrane-bound choline dehydrogenases, respectively, from a variety of organisms. Evidence is presented that BetA is able to oxidize both choline and glycine betaine aldehyde and therefore can mediate both steps in the synthesis of glycine betaine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-455
2000-02-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460455a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-455&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. R., Struhl K.. 1989; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Boch J., Kempf B., Bremer E.. 1994; Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol176:5364–5371
    [Google Scholar]
  3. Boch J., Kempf B., Schmid R., Bremer E.. 1996; Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of gbsAB genes. J Bacteriol178:5121–5129
    [Google Scholar]
  4. Boch J., Nau-Wagner G., Kneip S., Bremer E.. 1997; Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol168:282–289[CrossRef]
    [Google Scholar]
  5. Brouquisse R., Weigel D., Rhodes D., Yocum C. F., Hanson A. D.. 1989; Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol90:322–329[CrossRef]
    [Google Scholar]
  6. Brow M. A. D., Pesin R., Sutcliffe J. G.. 1985; The tetracycline repressor protein of pSC101. Mol Biol Evol2:1–12
    [Google Scholar]
  7. Cánovas D., Vargas C., Csonka L. N., Ventosa A., Nieto J. J.. 1996; Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. J Bacteriol178:7221–7226
    [Google Scholar]
  8. Cánovas D., Vargas C., Iglesias-Guerra F., Csonka L. N., Rhodes D., Ventosa A., Nieto J. J.. 1997; Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J Biol Chem272:25794–25801[CrossRef]
    [Google Scholar]
  9. Cánovas D., Vargas C., Calderón M. I., Ventosa A., Nieto J. J.. 1998a; Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst Appl Microbiol21:487–497[CrossRef]
    [Google Scholar]
  10. Cánovas D., Vargas C., Csonka L. N., Ventosa A., Nieto J. J.. 1998b; Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl Environ Microbiol64:4095–4097
    [Google Scholar]
  11. Cohen G. N., Rickenberg R. H.. 1956; Concentration specifique reversible des amino acides chez Escherichia coli. Ann Inst Pasteur91:693–720
    [Google Scholar]
  12. Csonka L. N., Hanson A. D.. 1991; Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol45:569–606[CrossRef]
    [Google Scholar]
  13. Dersch P., Fsihi H., Bremer E.. 1994; Low-copy-number T7 vectors for selective gene expression and efficient protein overproduction in Escherichia coli. FEMS Microbiol Lett123:19–26[CrossRef]
    [Google Scholar]
  14. Deshnium P., Los D. A., Hayashi H., Mustardy L., Murata N.. 1995; Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol29:897–907[CrossRef]
    [Google Scholar]
  15. Elcock A. H., McCammon J. A.. 1998; Electrostatic contribution to the stability of halophilic proteins. J Mol Biol280:731–748[CrossRef]
    [Google Scholar]
  16. Göller K., Ofer A., Galinski E. A.. 1998; Construction of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiol Lett161:293–300[CrossRef]
    [Google Scholar]
  17. Guan K., Weiner H.. 1990; Sequence of the precursor of the bovine liver mitochondrial aldehyde dehydrogenase as determined from its cDNA, its genes, and its functionality. Arch Biochem Biophys277:351–360[CrossRef]
    [Google Scholar]
  18. Haardt M., Kempf B., Faatz E., Bremer E.. 1995; The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12. Mol Gen Genet246:783–786[CrossRef]
    [Google Scholar]
  19. Habenicht A., Hellman U., Cerff R.. 1994; Non-phosphorylating GAPDH of higher plants is a member of the aldehyde dehydrogenase syperfamily with no sequence homology to phosphorylating GAPDH. J Mol Biol237:165–171[CrossRef]
    [Google Scholar]
  20. Ikuta S., Imamura S., Misaki H., Horiuti Y.. 1977; Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem82:1741–1749
    [Google Scholar]
  21. Johansson K., El-Ahmad M., Ramaswamy S., Hjelmqvist L., Jörnvall H., Eklund H.. 1998; Structure of betaine aldehyde dehydrogenase at 2·1 Å resolution. Protein Sci7:2106–2117[CrossRef]
    [Google Scholar]
  22. Jones D. E., Brennan M. D., Hempel J., Lindalh R.. 1988; Cloning and complete nucleotide sequence of a full-length cDNA encoding a catalytically functional tumour-associated aldehyde dehydrogenase. Proc Natl Acad Sci USA85:1782–1786[CrossRef]
    [Google Scholar]
  23. Kappes R. M., Kempf B., Kneip S., Boch J., Gade J., Meier-Wagner J., Bremer E.. 1999; Two evolutionary closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol32:203–216[CrossRef]
    [Google Scholar]
  24. Kempf B., Bremer E.. 1998; Uptake and synthesis of compatible solutes as microbial stress-responses to high-osmolality environments. Arch Microbiol170:319–330[CrossRef]
    [Google Scholar]
  25. Kessler B., de Lorenzo V., Timmis K. N.. 1992; A general system to integrate lacZ fusions into the chromosome of gram-negative bacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet233:293–301[CrossRef]
    [Google Scholar]
  26. Labes M., Pühler A., Simon R.. 1990; A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for gram-negative bacteria. Gene89:37–46[CrossRef]
    [Google Scholar]
  27. Lamark T., Kaasen I., Eshoo M. W., Falkenberg P., McDougall J., Strøm A. R.. 1991; DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol5:1049–1064[CrossRef]
    [Google Scholar]
  28. Lamark T., Røkenes T. P., McDougall J., Strøm A. R.. 1996; The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. J Bacteriol178:1655–1662
    [Google Scholar]
  29. Landfald B., Strøm A. R.. 1986; Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol165:849–855
    [Google Scholar]
  30. Legaria J., Rajsbaum R., Muñoz-Clares R. A., Villegas-Sepulveda N., Simpson J., Iturrriaga G.. 1998; Molecular characterization of two genes encoding betaine-aldehyde dehydrogenase from amaranth. Expression in leaves under short-term exposure to osmotic stress or abscisic acid. Gene18:69–76
    [Google Scholar]
  31. Le Rudulier D., Strøm A. R., Dandekar A. M., Smith L. T., Valentine R. C.. 1984; Molecular biology of osmoregulation. Science224:1064–1068[CrossRef]
    [Google Scholar]
  32. Liu Z., Sun Y., Chung Y. J..7 other authors 1997; The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nature Struct Biol4:317–326[CrossRef]
    [Google Scholar]
  33. McCue K. F., Hanson A. D.. 1992; Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol18:1–11[CrossRef]
    [Google Scholar]
  34. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Miller J. H.. 1991; A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Nakamura T., Yokota S., Muramoto Y., Tsutsui K., Oguri Y., Fukui K., Takabe T.. 1997; Expression of a betaine aldehyde dehydrogenase in rice, a glycine betaine nonaccumulator, and possible location of its protein in peroxisomes. Plant J11:1115–1120[CrossRef]
    [Google Scholar]
  37. Nau-Wagner G., Boch J., Le Good J. A., Bremer E.. 1999; High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis. Appl Environ Microbiol65:560–568
    [Google Scholar]
  38. Oren A.. 1999; Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev63:334–348
    [Google Scholar]
  39. Østerås M., Boncompagni E., Vincent N., Poggi M.-C., Le Rudulier D.. 1998; Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine. Proc Natl Acad Sci USA95:11394–11399[CrossRef]
    [Google Scholar]
  40. Pan W., Spratt B. G.. 1994; Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol11:769–775[CrossRef]
    [Google Scholar]
  41. Pocard J.-A., Vincent N., Boncompagni E., Smith L. T., Poggi M.-C., Le Rudulier D.. 1997; Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34. Microbiology143:1369–1379[CrossRef]
    [Google Scholar]
  42. Røkenes T. P., Lamark T., Strøm A. R.. 1996; DNA-binding properties of the BetI repressor protein of Escherichia coli: the inducer choline stimulates BetI–DNA complex formation. J Bacteriol178:1663–1670
    [Google Scholar]
  43. Rosenstein R., Futter-Bryniok D., Götz F.. 1999; The choline-converting pathway in Staphylococcus xylosus C2A: genetic and physiological characterization. J Bacteriol181:2273–2278
    [Google Scholar]
  44. Saito Y., Ishii Y., Hayashi H..9 other authors 1997; Cloning of genes coding for l-sorbose and l-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-l-gulonate, a precursor of l-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol63:454–460
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Smith L. T., Pocard J. A., Bernard T., Le Rudulier D.. 1988; Osmotic control of glycine betaine synthesis and degradation in Rhizobium meliloti. J Bacteriol170:3142–3149
    [Google Scholar]
  47. Steinmetz C. G., Xie P., Weiner H., Hurley T.. 1997; Structure of a mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure5:701–711[CrossRef]
    [Google Scholar]
  48. Takeshita S., Sato M., Tabo M., Masahashi W., Hashimoto-Gothoh T.. 1987; High-copy-number and low-copy-number plasmid vectors for lacZ α-complementation and chloramphenicol- or kanamycin-resistance selection. Gene61:63–74[CrossRef]
    [Google Scholar]
  49. Vargas C., Coronado M. J., Ventosa A., Nieto J. J.. 1997; Host range, stability and compatibility of broad host-range-plasmids and a shuttle vector in moderately halophilic bacteria. Evidence of intragenic and intergenic conjugation in moderate halophiles. Syst Appl Microbiol20:173–181[CrossRef]
    [Google Scholar]
  50. Ventosa A., Nieto J. J.. 1995; Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol11:85–94[CrossRef]
    [Google Scholar]
  51. Ventosa A., Nieto J. J., Oren A.. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev62:504–544
    [Google Scholar]
  52. Vreeland R. H.. 1992; The family Halomonadaceae. In The Prokaryotes pp.3181–3188Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer;
    [Google Scholar]
  53. Weretilnyk E. A., Hanson A. D.. 1990; Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaption to salinity and drought. Proc Natl Acad Sci USA87:2745–2749[CrossRef]
    [Google Scholar]
  54. Wierenga R. K., Terpstra P., Hol W. G. J.. 1986; Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol187:101–117[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-455
Loading
/content/journal/micro/10.1099/00221287-146-2-455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error