1887

Abstract

The lactococcal abortive infection mechanism AbiK was previously shown to be highly effective against the small isometric-headed bacteriophage ul36 of the P335 species, as evidenced by an efficiency of plaquing (e.o.p.) of 10, a 14-fold reduction in the burst size and an efficiency at which centres of infection form (e.c.o.i.) of 0·5%. No phage DNA was detected in the infected AbiK cells [Émond, É., Holler, B. J., Boucher, I., Vandenbergh, P. A., Vedamuthu, E. R., Kondo, J. K. & Moineau, S. (1997) . 63, 1274–1283]. Here, the effects of AbiK are compared on the small isometric-headed phages p2 and P008 (936 species) and on the phage P335 (P335 species). The microbiological impacts of AbiK on p2 were relatively similar to those reported for ul36, with an e.o.p. of 10, an 11-fold reduction in the burst size and an e.c.o.i. of 5%. Contrary to phage ul36, replication of phage p2 DNA was observed in the AbiK cells. Only immature forms (concatemeric and circular DNA) of phage p2 DNA were found, indicating that the presence of AbiK prevented phage DNA maturation. These distinct molecular consequences of AbiK were also observed for phages P335 and P008, two phages that propagate on the same host. To the knowledge of the authors, this is the first time that different phage responses towards an Abi system have been reported.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-445
2000-02-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460445a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-445&mimeType=html&fmt=ahah

References

  1. Allison G. E., Klaenhammer T. R.. 1998; Phage resistance mechanisms in lactic acid bacteria. Int Dairy J8:207–226[CrossRef]
    [Google Scholar]
  2. Anba J., Bidnenko E., Hillier A., Ehrlich S. D., Chopin M. C.. 1995; Characterization of the lactococcal abiD1 gene coding for phage abortive infection. J Bacteriol177:3818–3823
    [Google Scholar]
  3. Bidnenko E., Ehrlich S. D., Chopin M. C.. 1995; Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1. J Bacteriol177:3824–3829
    [Google Scholar]
  4. Catalano C. E., Cue D., Feiss M.. 1995; Virus DNA packaging: the strategy used by phage lambda. Mol Microbiol16:1075–1086[CrossRef]
    [Google Scholar]
  5. Chandry P. S., Moore S. C., Boyce J. D., Davidson B. E., Hillier A. J.. 1997; Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Mol Microbiol26:49–64[CrossRef]
    [Google Scholar]
  6. Chibani Azaı̈ez S. R., Fliss I., Simard R. E., Moineau S.. 1998; Monoclonal antibodies raised against native major capsid proteins of lactococcal c2-like bacteriophages. Appl Environ Microbiol64:4255–4259
    [Google Scholar]
  7. Chowdhury R., Biswas S. K., Das J.. 1989; Abortive replication of choleraphage ϕ149 in Vibrio cholerae biotype El Tor. J Virol63:392–397
    [Google Scholar]
  8. Cluzel P.-J., Chopin A., Ehrlich S. D., Chopin M. C.. 1991; Phage abortive infection mechanism from Lactococcus lactis subsp. lactis, expression of which is mediated by an Iso-ISS1 element. Appl Environ Microbiol57:3547–3551
    [Google Scholar]
  9. Deng Y. M., Harvey M. L., Liu C. Q., Dunn N. W.. 1997; A novel, plasmid-encoded phage abortive infection system from Lactococcus lactis biovar diacetylactis. FEMS Microbiol Lett146:149–154[CrossRef]
    [Google Scholar]
  10. Deng Y. M., Liu C. Q., Dunn N. W.. 1999; Genetic organization and functional analysis of a novel phage abortive infection system, AbiL, from Lactococcus lactis. J Biotechnol67:135–149[CrossRef]
    [Google Scholar]
  11. Dinsmore P. K., Klaenhammer T. R.. 1995; Bacteriophage resistance in Lactococcus. Mol Biotechnol4:297–314[CrossRef]
    [Google Scholar]
  12. Dinsmore P. K., Klaenhammer T. R.. 1997; Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA. J Bacteriol179:2949–2957
    [Google Scholar]
  13. Dinsmore P. K., O’Sullivan D. J., Klaenhammer T. R.. 1998; A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species. Gene212:5–11[CrossRef]
    [Google Scholar]
  14. Durmaz E., Higgins D. L., Klaenhammer T. R.. 1992; Molecular characterization of a second abortive phage resistance mechanism in Lactococcus lactis subsp. lactis ME2. J Bacteriol174:7463–7469
    [Google Scholar]
  15. Émond É., Holler B. J., Boucher I., Vandenbergh P. A., Vedamuthu E. R., Kondo J. K., Moineau S.. 1997; Phenotypic and genetic characterization of the bacteriophage abortive infection mechanism AbiK from Lactococcus lactis. Appl Environ Microbiol63:1274–1283
    [Google Scholar]
  16. Émond É., Dion É., Walker S. A., Vedamuthu E. R., Kondo J. K., Moineau S.. 1998; AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl Environ Microbiol64:4748–4756
    [Google Scholar]
  17. Garvey P., Fitzgerald G. F., Hill C.. 1995; Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl Environ Microbiol61:4321–4328
    [Google Scholar]
  18. Geis A., Janzen T., Teuber M., Wirsching F.. 1992; Mechanism of plasmid mediated bacteriophage resistance in lactococci. FEMS Microbiol Lett94:7–14[CrossRef]
    [Google Scholar]
  19. Gething M. J.. 1997; Protein folding. The difference with prokaryotes. Nature388:329[CrossRef]
    [Google Scholar]
  20. Hill C., Miller L. A., Klaenhammer T. R.. 1990; Nucleotide sequence and distribution of the pTR2030 resistance determinant (hsp) which aborts bacteriophage infection in lactococci. Appl Environ Microbiol56:2255–2258
    [Google Scholar]
  21. Hill C., Massey I. J., Klaenhammer T. R.. 1991; Rapid method to characterize lactococcal bacteriophage genomes. Appl Environ Microbiol57:283–288
    [Google Scholar]
  22. Jarvis A. W.. 1978; Serological studies of a host range mutant of a lactic streptococcal bacteriophage. Appl Environ Microbiol36:785–789
    [Google Scholar]
  23. Jarvis A. W., Fitzgerald G. F., Mata M., Mercenier A., Neve H., Powell I., Ronda C., Saxelin M., Teuber M.. 1991; Species and type phages of lactococcal bacteriophages. Intervirology32:2–9
    [Google Scholar]
  24. Klaenhammer T. R.. 1989; Genetic characterization of multiple mechanisms of phage defense from a prototype phage-insensitive strain, Lactococcus lactis ME2. J Dairy Sci72:3429–3443[CrossRef]
    [Google Scholar]
  25. Klaenhammer T. R., Sanozky R. B.. 1985; Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. J Gen Microbiol131:1531–1541
    [Google Scholar]
  26. McKay L. L., Baldwin K. A., Zottola E. A.. 1972; Loss of lactose metabolism in lactic streptococci. Appl Environ Microbiol23:1090–1096
    [Google Scholar]
  27. McLandsborough L. A., Kolaetis K. M., Requena T., McKay L. L.. 1995; Cloning and characterization of the abortive infection genetic determinant AbiD isolated from pBF61 of Lactococcus lactis subsp. lactis KR5. Appl Environ Microbiol61:2023–2026
    [Google Scholar]
  28. Majumdar S., Dey S. N., Chowdhury R., Dutta C., Das J.. 1988; Intracellular development of choleraphage ϕ149 under permissive and nonpermissive conditions: an electron microscopic study. Intervirology29:27–38[CrossRef]
    [Google Scholar]
  29. Moineau S., Fortier J., Ackermann H. W., Pandian S.. 1992; Characterization of lactococcal bacteriophages from Québec cheese plants. Can J Microbiol38:875–882[CrossRef]
    [Google Scholar]
  30. Moineau S., Durmaz E., Pandian S., Klaenhammer T. R.. 1993; Differentiation of two abortive mechanisms by using monoclonal antibodies directed toward lactococcal bacteriophage capsid proteins. Appl Environ Microbiol59:208–212
    [Google Scholar]
  31. Moineau S., Pandian S., Klaenhammer T. R.. 1994; Evolution of a lytic bacteriophage via DNA acquisition from the Lactococcus lactis chromosome. Appl Environ Microbiol60:1832–1841
    [Google Scholar]
  32. Moineau S., Walker S. A., Vedamuthu E. R., Vandenbergh P. A.. 1995; Cloning and sequencing of LlaDCHI restriction and modification genes from Lactococcus lactis and relatedness of this system to the Streptococcus pneumoniae DpnII system. Appl Environ Microbiol61:2193–2202
    [Google Scholar]
  33. Moineau S., Borkaev M., Holler B. J., Walker S. A., Kondo J. K., Vedamuthu E. R., Vandenbergh P. A.. 1996; Isolation and characterization of lactococcal bacteriophages from cultured buttermilk plants in the United States. J Dairy Sci79:2104–2111[CrossRef]
    [Google Scholar]
  34. Murialdo H.. 1991; Bacteriophage lambda DNA maturation and packaging. Annu Rev Biochem60:125–153[CrossRef]
    [Google Scholar]
  35. Murialdo H., Becker A.. 1978; Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages. Microbiol Rev42:529–576
    [Google Scholar]
  36. Murialdo H., Tzamtzis D.. 1997; Mutations of the coat protein gene of bacteriophage lambda that overcome the necessity for the FI gene; the EFi domain. Mol Microbiol24:341–353[CrossRef]
    [Google Scholar]
  37. O’Connor L., Coffey A., Daly C., Fitzgerald G. F.. 1996; AbiG, a genotypically novel abortive infection mechanism encoded by plasmid pCI750 of Lactococcus lactis subsp. cremoris UC653. Appl Environ Microbiol62:3075–3082
    [Google Scholar]
  38. Parreira R., Ehrlich S. D., Chopin M. C.. 1996; Dramatic decay of the phage transcripts in lactococcal cells carrying the abortive infection determinant AbiB. Mol Microbiol19:221–230[CrossRef]
    [Google Scholar]
  39. Prévots F., Ritzenthaler P.. 1998; Complete sequence of the new lactococcal abortive phage resistance gene abiO. J Dairy Sci81:1483–1485[CrossRef]
    [Google Scholar]
  40. Prévots F., Daloyau M., Bonin O., Dumont X., Tolou S.. 1996; Cloning and sequencing of the novel abortive infection gene abiH of Lactococcus lactis ssp. lactis biovar diacetylactis S94. FEMS Microbiol Lett142:295–299[CrossRef]
    [Google Scholar]
  41. Prévots F., Tolou S., Delpech B., Kaghad M., Daloyau M.. 1998; Nucleotide sequence and analysis of the new chromosomal abortive gene abiN of Lactococcus lactis subsp. cremoris S114. FEMS Microbiol Lett159:331–336[CrossRef]
    [Google Scholar]
  42. Pringle C. R.. 1996; Virus taxonomy 1996 – a bulletin from the Xth International Congress of Virology in Jerusalem. Arch Virol141:2251–2256[CrossRef]
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Sanders M. E., Klaenhammer T. R.. 1980; Restriction/modification in group N streptococci: effect of heat on development of modified lytic bacteriophage. Appl Environ Microbiol40:500–506
    [Google Scholar]
  45. Sing W. D., Klaenhammer T. R.. 1990; Plasmid-induced abortive infection in Lactococci: a review. J Dairy Sci73:2239–2251[CrossRef]
    [Google Scholar]
  46. Southern E. M.. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol98:503–517[CrossRef]
    [Google Scholar]
  47. Strausbauch P., Roberson L., Sehgal N.. 1985; Embedding of cell suspensions in ultra-low gelling temperature agarose: improved specimen preparation for TEM. J Electron Microsc Tech2:261–262[CrossRef]
    [Google Scholar]
  48. Su P., Harvey M., Im H. J., Dunn N. W.. 1997; Isolation, cloning and characterization of the abiI gene from Lactococcus lactis subsp. lactis M138 encoding abortive phage infection. J Biotechnol54:95–104[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-445
Loading
/content/journal/micro/10.1099/00221287-146-2-445
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error