1887

Abstract

Changing the growth mode of by adding fermentable amounts of glucose to cells growing on a non-fermentable carbon source leads to rapid repression of general stress-responsive genes like . Remarkably, glucose repression of appeared to occur even at very low glucose concentrations, down to 0005%. Although these low levels of glucose do not induce fermentative growth, they do act as a growth signal, since upon addition of glucose to a concentration of 002%, growth rate increased and ribosomal protein gene transcription was up-regulated. In an attempt to elucidate how this type of glucose signalling may operate, several signalling mutants were examined. Consistent with the low amounts of glucose that elicit repression, neither the main glucose-repression pathway nor cAMP-dependent activation of protein kinase A appeared to play a role in this regulation. Using mutants involved in glucose metabolism, evidence was obtained suggesting that glucose 6-phosphate serves as a signalling molecule. To identify the target for glucose repression on the promoter of the gene, a promoter deletion series was used. The major transcription factors governing (stress-induced) transcriptional activation of are Msn2p and Msn4p, binding to the general stress-responsive promoter elements (STREs). Surprisingly, glucose repression of appeared to be independent of Msn2/4p: transcription in glycerol-grown cells was unaffected in a ΔΔ strain. Nevertheless, evidence was obtained that STRE-mediated transcription is the target of repression by low amounts of glucose. These data suggest that an as yet unidentified factor is involved in STRE-mediated transcriptional regulation of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-367
2000-02-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460367a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-367&mimeType=html&fmt=ahah

References

  1. Beullens, M., Mbonyi, K., Geerts, L., Gladines, D., Detremerie, K., Jans, A. W. & Thevelein, J. M. ( 1988; ). Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 172, 227-231.[CrossRef]
    [Google Scholar]
  2. Boles, E., Heinisch, J. & Zimmermann, F. K. ( 1993; ). Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Yeast 9, 761-770.[CrossRef]
    [Google Scholar]
  3. Cameron, S., Levin, L., Zoller, M. & Wigler, M. ( 1988; ). cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53, 555-566.[CrossRef]
    [Google Scholar]
  4. Cereghino, G. P. & Scheffler, I. E. ( 1996; ). Genetic analysis of glucose regulation in Saccharomyces cerevisiae: control of transcription versus mRNA turnover. EMBO J 15, 363-374.
    [Google Scholar]
  5. Colombo, S., Ma, P. S., Cauwenberg, L. & 8 other authors ( 1998; ). Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAmp signalling in the yeast Saccharomyces cerevisiae. EMBO J 17, 3326–3341.[CrossRef]
    [Google Scholar]
  6. Corominas, J., Clotet, J., Fernandez-Banares, I., Boles, E., Zimmermann, F. K., Guinovart, J. J. & Arino, J. ( 1992; ). Glycogen metabolism in a Saccharomyces cerevisiae phosphoglucose isomerase (pgil) disruption mutant. FEBS Lett 310, 182-186.[CrossRef]
    [Google Scholar]
  7. Crauwels, M., Donaton, M. C. V., Pernambuco, M. B., Winderickx, J., De Winde, J. H. & Thevelein, J. M. ( 1997; ). The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cApk activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology 143, 2627-2637.[CrossRef]
    [Google Scholar]
  8. De Winde, J. H., Crauwels, M., Hohmann, S., Thevelein, J. M. & Winderickx, J. ( 1996; ). Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem 241, 633-643.[CrossRef]
    [Google Scholar]
  9. Estruch, F. & Carlson, M. ( 1993; ). Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 13, 3872-3881.
    [Google Scholar]
  10. Gancedo, J. M. ( 1998; ). Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62, 334-361.
    [Google Scholar]
  11. Gonçalves, P. & Planta, R. J. ( 1998; ). Starting up yeast glycolysis. Trends Microbiol 6, 314-319.[CrossRef]
    [Google Scholar]
  12. Gorner, W., Durchschlag, E., Martinez-Pastor, M. T., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H. & Schuller, C. ( 1998; ). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12, 586-597.[CrossRef]
    [Google Scholar]
  13. Griffioen, G., Mager, W. H. & Planta, R. J. ( 1994; ). Nutritional upshift response of ribosomal protein gene transcription in Saccharomyces cerevisiae. FEMS Microbiol Lett 123, 137-144.[CrossRef]
    [Google Scholar]
  14. Griffioen, G., Laan, R. J., Mager, W. H. & Planta, R. J. ( 1996; ). Ribosomal protein gene transcription in Saccharomyces cerevisiae shows a biphasic response to nutritional changes. Microbiology 142, 2279-2287.[CrossRef]
    [Google Scholar]
  15. Herrero, P., Martinezcampa, C. & Moreno, F. ( 1998; ). The hexokinase 2 protein participates in regulatory DNA–protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett 434, 71-76.[CrossRef]
    [Google Scholar]
  16. Hohmann, S. (1997). Shaping up: the responses of yeast to osmotic stress. In Yeast Stress Responses, pp. 101–146. Edited by S. Hohmann & W. H. Mager. Georgetown, TX: R. G. Landes.
  17. Hohmann, S., Neves, M. J., de Koning, W., Alijo, R., Ramos, J. & Thevelein, J. M. ( 1993; ). The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr Genet 23, 281-289.[CrossRef]
    [Google Scholar]
  18. Jiang, Y., Davis, C. & Broach, J. R. ( 1998; ). Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J 17, 6942-6951.[CrossRef]
    [Google Scholar]
  19. Kraakman, L., Lemaire, K., Ma, P. S., Teunissen, A., Donaton, M. C. V., Van Dijck, P., Winderickx, J., de Winde, J. H. & Thevelein, J. M. ( 1999; ). A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32, 1002-1012.[CrossRef]
    [Google Scholar]
  20. Kubler, E., Mosch, H. U., Rupp, S. & Lisanti, M. P. ( 1997; ). Gpa2p, a G-protein alpha-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J Biol Chem 272, 20321-20323.[CrossRef]
    [Google Scholar]
  21. Lombardo, A., Cereghino, G. P. & Scheffler, I. E. ( 1992; ). Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 12, 2941-2948.
    [Google Scholar]
  22. Lorenz, M. C. & Heitman, J. ( 1997; ). Yeast pseudohyphal growth is regulated by Gpa2, a G protein alpha homolog. EMBO J 16, 7008-7018.[CrossRef]
    [Google Scholar]
  23. Lundin, M., Nehlin, J. O. & Ronne, H. ( 1994; ). Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol 14, 1979-1985.
    [Google Scholar]
  24. Mager, W. H. & Planta, R. J. ( 1991; ). Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate. Mol Cell Biochem 104, 181-187.
    [Google Scholar]
  25. Martinez-Pastor, M. T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H. & Estruch, F. ( 1996; ). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15, 2227-35.
    [Google Scholar]
  26. Meijer, M. M. C., Boonstra, J., Verkleij, A. J. & Verrips, C. T. ( 1998; ). Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J Biol Chem 273, 24102-24107.[CrossRef]
    [Google Scholar]
  27. Moskvina, E., Schuller, C., Maurer, C. T., Mager, W. H. & Ruis, H. ( 1998; ). A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14, 1041-1050.[CrossRef]
    [Google Scholar]
  28. Nehlin, J. O., Carlberg, M. & Ronne, H. ( 1991; ). Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10, 3373-3377.
    [Google Scholar]
  29. Ni, H. T. & LaPorte, D. C. ( 1995; ). Response of a yeast glycogen synthase gene to stress. Mol Microbiol 16, 1197-1205.[CrossRef]
    [Google Scholar]
  30. Nonet, M., Scafe, C., Sexton, J. & Young, R. ( 1987; ). Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol Cell Biol 7, 1602-1611.
    [Google Scholar]
  31. Ozcan, S., Vallier, L. G., Flick, J. S., Carlson, M. & Johnston, M. ( 1997; ). Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose. Yeast 13, 127-137.[CrossRef]
    [Google Scholar]
  32. Parrou, J. L., Enjalbert, B., Plourde, L., Bauche, A., Gonzalez, B. & Francois, J. ( 1999; ). Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15, 191-203.[CrossRef]
    [Google Scholar]
  33. Pernambuco, M. B., Winderickx, J., Crauwels, M., Griffioen, G., Mager, W. H. & Thevelein, J. M. ( 1996; ). Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources Microbiology 142, 1775-1782.[CrossRef]
    [Google Scholar]
  34. Praekelt, U. M. & Meacock, P. A. ( 1990; ). HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 223, 97-106.[CrossRef]
    [Google Scholar]
  35. Randezgil, F., Sanz, P., Entian, K. D. & Prieto, J. A. ( 1998; ). Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Mol Cell Biol 18, 2940-2948.
    [Google Scholar]
  36. Ronne, H. ( 1995; ). Glucose repression in fungi. Trends Genet 11, 12-17.[CrossRef]
    [Google Scholar]
  37. Scheffler, I. E., Delacruz, B. J. & Prieto, S. ( 1998; ). Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int J Biochem Cell Biol 30, 1175-1193.[CrossRef]
    [Google Scholar]
  38. Schmitt, A. P. & McEntee, K. ( 1996; ). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93, 5777-5782.[CrossRef]
    [Google Scholar]
  39. Siderius, M., Rots, E. & Mager, W. H. ( 1997; ). High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion. Microbiology 143, 3241-3250.[CrossRef]
    [Google Scholar]
  40. Thevelein, J. M. ( 1991; ). Fermentable sugars and intracellular acidification as specific activators of the RAS–adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5, 1301-1307.[CrossRef]
    [Google Scholar]
  41. Thevelein, J. M. ( 1994; ). Signal transduction in yeast. Yeast 10, 1753-1790.[CrossRef]
    [Google Scholar]
  42. Thomas, B. J. & Rothstein, R. ( 1989; ). Elevated recombination rates in transcriptionally active DNA. Cell 56, 619-630.[CrossRef]
    [Google Scholar]
  43. Toda, T., Uno, I., Ishikawa, T. & 7 other authors ( 1985; ). In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40, 27–36.[CrossRef]
    [Google Scholar]
  44. Treitel, M. A. & Carlson, M. ( 1995; ). Repression by SSN6–TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci USA 92, 3132-3136.[CrossRef]
    [Google Scholar]
  45. Varela, J. C., Praekelt, U. M., Meacock, P. A., Planta, R. J. & Mager, W. H. ( 1995; ). The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 15, 6232-6245.
    [Google Scholar]
  46. Yin, Z. K., Smith, R. J. & Brown, A. J. P. ( 1996; ). Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Mol Microbiol 20, 751-764.[CrossRef]
    [Google Scholar]
  47. Yun, C. W., Tamaki, H., Nakayama, R., Yamamoto, K. & Kumagai, H. ( 1998; ). Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 252, 29-33.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-367
Loading
/content/journal/micro/10.1099/00221287-146-2-367
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error