1887

Abstract

Most drug-resistant clinical isolates of the tubercle bacillus are resistant to isoniazid, a first-line antituberculous drug. This antibiotic was shown to act on by inhibiting a 2--enoyl-acyl carrier protein reductase, called InhA. However, the exact role played by InhA in mycobacteria remained unclear. A mycobacterial enzyme fraction containing InhA was isolated. It displays a long-chain fatty acid elongation activity with the characteristic properties described for the FAS-II (fatty acid synthetase II) system. Inhibition of this activity by InhA inhibitors, namely isoniazid, hexadecynoyl-CoA or octadecynoyl-CoA, showed that InhA belongs to the FAS-II system. Moreover, the InhA inhibitors also blocked the biosynthesis of mycolic acids, which are major lipids of the mycobacterial envelope. The data strongly suggest that isoniazid acts on the mycobacterial cell wall by preventing the FAS-II system from producing long-chain fatty acid precursors for mycolic acid biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-289
2000-02-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460289a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-289&mimeType=html&fmt=ahah

References

  1. Banerjee A., Dubnau E., Quémard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R. Jr. 1994; InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science263:227–230[CrossRef]
    [Google Scholar]
  2. Banerjee A., Sugantino M., Sacchettini J. C., Jacobs W. R. Jr. 1998; The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. Microbiology144:2697–2704[CrossRef]
    [Google Scholar]
  3. Bardou F., Quémard A., Dupont M. A., Horn C., Marchal G., Daffé M.. 1996; Effects of isoniazid on the ultrastructure of Mycobacterium aurum and Mycobacterium tuberculosis and on the production of secreted proteins. Antimicrob Agents Chemother40:2459–2467
    [Google Scholar]
  4. Bardou F., Raynaud C., Ramos C., Lanéelle M. A., Lanéelle G.. 1998; Mechanism of isoniazid uptake in Mycobacterium tuberculosis. Microbiology144:2539–2544[CrossRef]
    [Google Scholar]
  5. Basso L. A., Zheng R., Musser J. M., Jacobs W. R. Jr, Blanchard J. S.. 1998; Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J Infect Dis178:769–775[CrossRef]
    [Google Scholar]
  6. Bloch K.. 1977; Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol45:1–84
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J..39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  8. Daffé M., Draper P.. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol39:131–203
    [Google Scholar]
  9. Dessen A., Quémard A., Blanchard J. S., Jacobs W. R. Jr, Sacchettini J. C.. 1995; Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science267:1638–1641[CrossRef]
    [Google Scholar]
  10. Dubnau E., Lanéelle M. A., Soares S., Bénichou A., Vaz T., Promé D., Promé J. C., Daffé M., Quémard A.. 1997; Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto- and hydroxy-mycolic acids. Mol Microbiol23:313–322[CrossRef]
    [Google Scholar]
  11. Dubnau E., Marrakchi H., Smith I., Daffé M., Quémard A.. 1998; Mutations in the cmaB gene are responsible for the absence of methoxymycolic acid in Mycobacterium bovis BCG Pasteur. Mol Microbiol29:1526–1528
    [Google Scholar]
  12. George K. M., Yuan Y., Sherman D. R., Barry C. E.. 1995; The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. J Biol Chem270:27292–27298[CrossRef]
    [Google Scholar]
  13. Harwood J. L.. 1986; Lipid metabolism. In The Lipid Handbook pp.485–525Edited by Gunstone F. D., Harwood J. L., Padley F. B.. London & New York: Chapman & Hall;
    [Google Scholar]
  14. Kapur V., Li L. L., Hamrick M. R..10 other authors 1995; Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med119:131–138
    [Google Scholar]
  15. Kikuchi S., Kusaka T.. 1982; New malonyl-CoA-dependent fatty acid elongation system in Mycobacterium smegmatis. J Biochem92:839–844
    [Google Scholar]
  16. Kolattukudy P. E., Fernandes N. D., Azad A. K., Fitzmaurice A. M., Sirakova T. D.. 1997; Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol24:263–270[CrossRef]
    [Google Scholar]
  17. Lacave C., Quémard A., Lanéelle G.. 1990; Cell-free synthesis of mycolic acids in Mycobacterium aurum: radioactivity distribution in newly synthesized acids and presence of cell wall in the system. Biochim Biophys Acta1045:58–68[CrossRef]
    [Google Scholar]
  18. Lan é elle G.. 1989; Mycolic acid metabolism: biosynthesis of complex lipids. Acta Leprol7: (Suppl. 1)65–73
    [Google Scholar]
  19. Mdluli K., Slayden R. A., Zhu Y. Q., Ramaswamy S., Pan X., Mead D., Crane D. D., Musser J. M., Barry C. E.. 1998; Inhibition of a Mycobacterium tuberculosis β-ketoacyl-ACP synthase by isoniazid. Science280:1607–1610[CrossRef]
    [Google Scholar]
  20. Middlebrook G.. 1952; Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am Rev Tuberc65:765–767
    [Google Scholar]
  21. Musser J. M., Kapur V., Williams D. L., Kreiswirth B. N., van Soolingen D., van Embden J. D. A.. 1996; Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis173:196–202[CrossRef]
    [Google Scholar]
  22. Odriozola J. M., Bloch K.. 1977; Effects of phosphatidylcholine liposomes on the fatty acid synthetase complex from Mycobacterium smegmatis. Biochim Biophys Acta488:198–206[CrossRef]
    [Google Scholar]
  23. Odriozola J. M., Ramos J. A., Bloch K.. 1977; Fatty acid synthetase activity in Mycobacterium smegmatis: characterization of the acyl carrier protein-dependent elongating system. Biochim Biophys Acta488:207–217[CrossRef]
    [Google Scholar]
  24. Quémard A., Lacave C., Lanéelle G.. 1991; Isoniazid inhibition of mycolic acid synthesis by cell free extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob Agents Chemother35:1035–1039[CrossRef]
    [Google Scholar]
  25. Quémard A., Sacchettini J. C., Dessen A., Vilchèzes C., Bittman R., Jacobs W. R. Jr, Blanchard J. S.. 1995; Enzymatic characterization of the target for isoniazid in Mycobaterium tuberculosis. Biochemistry34:8235–8241[CrossRef]
    [Google Scholar]
  26. Quémard A., Dessen A., Sugantino M., Jacobs W. R. Jr, Sacchettini J. C., Blanchard J. S.. 1996; Binding of catalase-peroxidase-activated isoniazid to wild-type and mutant Mycobacterium tuberculosis enoyl-ACP reductases. J Am Chem Soc118:1561–1562[CrossRef]
    [Google Scholar]
  27. Qureshi N., Sathyamoorthy N., Takayama K.. 1984; Biosynthesis of C30 to C56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra. J Bacteriol157:46–52
    [Google Scholar]
  28. Ristow M., Mohlig M., Rifai M., Schatz H., Feldmann K., Pfeiffer A.. 1995; New isoniazid/ethionamide resistance gene mutation and screening for multidrug-resistant Mycobacterium tuberculosis strains. Lancet346:502–503
    [Google Scholar]
  29. Rozwarski D. A., Grant G. A., Barton D. H. R., Jacobs W. R. Jr, Sacchettini J. C.. 1998; Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science279:98–102[CrossRef]
    [Google Scholar]
  30. Shimakata T., Fujita Y., Kusaka T.. 1977; Acetyl-CoA-dependent elongation of fatty acids in Mycobacterium smegmatis. J Biochem82:725–732
    [Google Scholar]
  31. Slayden R. A., Lee R. E., Armour J. W., Cooper A. M., Orme I. M., Brennan P. J., Besra G. S.. 1996; Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother40:2813–2819
    [Google Scholar]
  32. Snider D. E., Raviglione M., Kochi A.. 1994; Global burden of tuberculosis. In Tuberculosis: Pathogenesis, Protection, and Control pp.3–11Edited by Bloom B. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Takayama K., Qureshi N.. 1984; Structure and synthesis of lipids. In The Mycobacteria, a Source Book pp.315–344Edited by Kubica G. P., Wayne L. G.. New York, NY: Marcel Dekker;
    [Google Scholar]
  34. Takayama K., Wang L., David H. L.. 1972; Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother2:29–35[CrossRef]
    [Google Scholar]
  35. Wheeler P. R., Anderson P. M.. 1996; Determination of the primary target for isoniazid in mycobacterial mycolic acid biosynthesis with Mycobacterium aurum A+. Biochem J318:451–457
    [Google Scholar]
  36. Winder F. G.. 1982; Mode of action of the antimycobacterial agents. In The Biology of the Mycobacteria pp.353–438Edited by Ratledge C., Stanford J.. London: Academic Press;
    [Google Scholar]
  37. World Health Organization 1997; Anti-tuberculosis drug resistance in the world: the WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance Geneva: WHO Global Tuberculosis Programme;
    [Google Scholar]
  38. Yasaka Y., Tanaka M., Shono T., Tetsumi T., Katakawa J.. 1990; 2-(2,3-Naphthalimino)ethyl trifluoromethanesulphonate as a highly reactive ultraviolet and fluorescent labelling agent for the liquid chromatographic determination of carboxylic acids. J Chromatogr508:133–140[CrossRef]
    [Google Scholar]
  39. Yuan Y., Lee R. E., Besra G. S., Belisle J. T., Barry C. E.. 1995; Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA92:6630–6634[CrossRef]
    [Google Scholar]
  40. Zabinski R. F., Blanchard J. S.. 1997; The requirement for manganese and oxygen in the isoniazid-dependent inactivation of Mycobacterium tuberculosis enoyl reductase. J Am Chem Soc119:2331–2332[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-289
Loading
/content/journal/micro/10.1099/00221287-146-2-289
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error