1887

Abstract

Most drug-resistant clinical isolates of the tubercle bacillus are resistant to isoniazid, a first-line antituberculous drug. This antibiotic was shown to act on by inhibiting a 2--enoyl-acyl carrier protein reductase, called InhA. However, the exact role played by InhA in mycobacteria remained unclear. A mycobacterial enzyme fraction containing InhA was isolated. It displays a long-chain fatty acid elongation activity with the characteristic properties described for the FAS-II (fatty acid synthetase II) system. Inhibition of this activity by InhA inhibitors, namely isoniazid, hexadecynoyl-CoA or octadecynoyl-CoA, showed that InhA belongs to the FAS-II system. Moreover, the InhA inhibitors also blocked the biosynthesis of mycolic acids, which are major lipids of the mycobacterial envelope. The data strongly suggest that isoniazid acts on the mycobacterial cell wall by preventing the FAS-II system from producing long-chain fatty acid precursors for mycolic acid biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-289
2000-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460289a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-289&mimeType=html&fmt=ahah

References

  1. Banerjee A., Dubnau E., Quémard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R. Jr 1994; InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230 [CrossRef]
    [Google Scholar]
  2. Banerjee A., Sugantino M., Sacchettini J. C., Jacobs W. R. Jr 1998; The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. Microbiology 144:2697–2704 [CrossRef]
    [Google Scholar]
  3. Bardou F., Quémard A., Dupont M. A., Horn C., Marchal G., Daffé M. 1996; Effects of isoniazid on the ultrastructure of Mycobacterium aurum and Mycobacterium tuberculosis and on the production of secreted proteins. Antimicrob Agents Chemother 40:2459–2467
    [Google Scholar]
  4. Bardou F., Raynaud C., Ramos C., Lanéelle M. A., Lanéelle G. 1998; Mechanism of isoniazid uptake in Mycobacterium tuberculosis. Microbiology 144:2539–2544 [CrossRef]
    [Google Scholar]
  5. Basso L. A., Zheng R., Musser J. M., Jacobs W. R. Jr, Blanchard J. S. 1998; Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J Infect Dis 178:769–775 [CrossRef]
    [Google Scholar]
  6. Bloch K. 1977; Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol 45:1–84
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  8. Daffé M., Draper P. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203
    [Google Scholar]
  9. Dessen A., Quémard A., Blanchard J. S., Jacobs W. R. Jr, Sacchettini J. C. 1995; Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267:1638–1641 [CrossRef]
    [Google Scholar]
  10. Dubnau E., Lanéelle M. A., Soares S., Bénichou A., Vaz T., Promé D., Promé J. C., Daffé M., Quémard A. 1997; Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto- and hydroxy-mycolic acids. Mol Microbiol 23:313–322 [CrossRef]
    [Google Scholar]
  11. Dubnau E., Marrakchi H., Smith I., Daffé M., Quémard A. 1998; Mutations in the cmaB gene are responsible for the absence of methoxymycolic acid in Mycobacterium bovis BCG Pasteur. Mol Microbiol 29:1526–1528
    [Google Scholar]
  12. George K. M., Yuan Y., Sherman D. R., Barry C. E. 1995; The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. J Biol Chem 270:27292–27298 [CrossRef]
    [Google Scholar]
  13. Harwood J. L. 1986; Lipid metabolism. In The Lipid Handbook pp. 485–525Edited by Gunstone F. D., Harwood J. L., Padley F. B. London & New York: Chapman & Hall;
    [Google Scholar]
  14. Kapur V., Li L. L., Hamrick M. R.10 other authors 1995; Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 119:131–138
    [Google Scholar]
  15. Kikuchi S., Kusaka T. 1982; New malonyl-CoA-dependent fatty acid elongation system in Mycobacterium smegmatis. J Biochem 92:839–844
    [Google Scholar]
  16. Kolattukudy P. E., Fernandes N. D., Azad A. K., Fitzmaurice A. M., Sirakova T. D. 1997; Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24:263–270 [CrossRef]
    [Google Scholar]
  17. Lacave C., Quémard A., Lanéelle G. 1990; Cell-free synthesis of mycolic acids in Mycobacterium aurum: radioactivity distribution in newly synthesized acids and presence of cell wall in the system. Biochim Biophys Acta 1045:58–68 [CrossRef]
    [Google Scholar]
  18. Lan é elle G. 1989; Mycolic acid metabolism: biosynthesis of complex lipids. Acta Leprol 7: (Suppl. 1)65–73
    [Google Scholar]
  19. Mdluli K., Slayden R. A., Zhu Y. Q., Ramaswamy S., Pan X., Mead D., Crane D. D., Musser J. M., Barry C. E. 1998; Inhibition of a Mycobacterium tuberculosis β-ketoacyl-ACP synthase by isoniazid. Science 280:1607–1610 [CrossRef]
    [Google Scholar]
  20. Middlebrook G. 1952; Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am Rev Tuberc 65:765–767
    [Google Scholar]
  21. Musser J. M., Kapur V., Williams D. L., Kreiswirth B. N., van Soolingen D., van Embden J. D. A. 1996; Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 173:196–202 [CrossRef]
    [Google Scholar]
  22. Odriozola J. M., Bloch K. 1977; Effects of phosphatidylcholine liposomes on the fatty acid synthetase complex from Mycobacterium smegmatis. Biochim Biophys Acta 488:198–206 [CrossRef]
    [Google Scholar]
  23. Odriozola J. M., Ramos J. A., Bloch K. 1977; Fatty acid synthetase activity in Mycobacterium smegmatis: characterization of the acyl carrier protein-dependent elongating system. Biochim Biophys Acta 488:207–217 [CrossRef]
    [Google Scholar]
  24. Quémard A., Lacave C., Lanéelle G. 1991; Isoniazid inhibition of mycolic acid synthesis by cell free extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob Agents Chemother 35:1035–1039 [CrossRef]
    [Google Scholar]
  25. Quémard A., Sacchettini J. C., Dessen A., Vilchèzes C., Bittman R., Jacobs W. R. Jr, Blanchard J. S. 1995; Enzymatic characterization of the target for isoniazid in Mycobaterium tuberculosis. Biochemistry 34:8235–8241 [CrossRef]
    [Google Scholar]
  26. Quémard A., Dessen A., Sugantino M., Jacobs W. R. Jr, Sacchettini J. C., Blanchard J. S. 1996; Binding of catalase-peroxidase-activated isoniazid to wild-type and mutant Mycobacterium tuberculosis enoyl-ACP reductases. J Am Chem Soc 118:1561–1562 [CrossRef]
    [Google Scholar]
  27. Qureshi N., Sathyamoorthy N., Takayama K. 1984; Biosynthesis of C30 to C56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra. J Bacteriol 157:46–52
    [Google Scholar]
  28. Ristow M., Mohlig M., Rifai M., Schatz H., Feldmann K., Pfeiffer A. 1995; New isoniazid/ethionamide resistance gene mutation and screening for multidrug-resistant Mycobacterium tuberculosis strains. Lancet 346:502–503
    [Google Scholar]
  29. Rozwarski D. A., Grant G. A., Barton D. H. R., Jacobs W. R. Jr, Sacchettini J. C. 1998; Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279:98–102 [CrossRef]
    [Google Scholar]
  30. Shimakata T., Fujita Y., Kusaka T. 1977; Acetyl-CoA-dependent elongation of fatty acids in Mycobacterium smegmatis. J Biochem 82:725–732
    [Google Scholar]
  31. Slayden R. A., Lee R. E., Armour J. W., Cooper A. M., Orme I. M., Brennan P. J., Besra G. S. 1996; Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother 40:2813–2819
    [Google Scholar]
  32. Snider D. E., Raviglione M., Kochi A. 1994; Global burden of tuberculosis. In Tuberculosis: Pathogenesis, Protection, and Control pp. 3–11Edited by Bloom B. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Takayama K., Qureshi N. 1984; Structure and synthesis of lipids. In The Mycobacteria, a Source Book pp. 315–344Edited by Kubica G. P., Wayne L. G. New York, NY: Marcel Dekker;
    [Google Scholar]
  34. Takayama K., Wang L., David H. L. 1972; Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2:29–35 [CrossRef]
    [Google Scholar]
  35. Wheeler P. R., Anderson P. M. 1996; Determination of the primary target for isoniazid in mycobacterial mycolic acid biosynthesis with Mycobacterium aurum A+. Biochem J 318:451–457
    [Google Scholar]
  36. Winder F. G. 1982; Mode of action of the antimycobacterial agents. In The Biology of the Mycobacteria pp. 353–438Edited by Ratledge C., Stanford J. London: Academic Press;
    [Google Scholar]
  37. World Health Organization 1997 Anti-tuberculosis drug resistance in the world: the WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance Geneva: WHO Global Tuberculosis Programme;
    [Google Scholar]
  38. Yasaka Y., Tanaka M., Shono T., Tetsumi T., Katakawa J. 1990; 2-(2,3-Naphthalimino)ethyl trifluoromethanesulphonate as a highly reactive ultraviolet and fluorescent labelling agent for the liquid chromatographic determination of carboxylic acids. J Chromatogr 508:133–140 [CrossRef]
    [Google Scholar]
  39. Yuan Y., Lee R. E., Besra G. S., Belisle J. T., Barry C. E. 1995; Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 92:6630–6634 [CrossRef]
    [Google Scholar]
  40. Zabinski R. F., Blanchard J. S. 1997; The requirement for manganese and oxygen in the isoniazid-dependent inactivation of Mycobacterium tuberculosis enoyl reductase. J Am Chem Soc 119:2331–2332 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-289
Loading
/content/journal/micro/10.1099/00221287-146-2-289
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error