1887

Abstract

Although the genetics and biochemistry of bacterial luminescence have been investigated extensively, the biological role of this phenomenon remains unclear. Here it is shown that , and mutants (unable to emit light) of the marine bacterium are significantly more sensitive to UV irradiation when cultivated in the dark after irradiation than when cultivated under a white fluorescent lamp. This difference was much less pronounced in the wild-type (luminescent) strain. Survival of UV-irradiated wild-type cells depended on subsequent cultivation conditions (in the dark or in the presence of external light). However, after UV irradiation, the percentage of surviving cells that bear genes responsible for luminescence was significantly higher than that of non-luminescent , irrespective of the subsequent cultivation conditions. Moreover, it is demonstrated that luminescence of can be stimulated by UV irradiation even in diluted cultures, under conditions when light emission by these bacteria is normally impaired due to quorum sensing regulation. It is proposed that luminescent bacteria have an internal source of light which could be used in DNA repair by a photoreactivation process. Therefore, production of internal light ensuring effective DNA repair seems to be at least one of the biological functions of bacterial luminescence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-283
2000-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460283a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-283&mimeType=html&fmt=ahah

References

  1. Adar Y. Y., Simaan M., Ulitzur S. 1992; Formation of the LuxR protein in the Vibrio fischeri lux system is controlled by HtpR through the GroESL proteins. J Bacteriol 174:7138–7143
    [Google Scholar]
  2. Bachmann B. J. 1996; Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp. 2460–2488Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Bassler B. L., Silverman M. R. 1995; Intercellular communication in marine Vibrio species: density-dependent regulation of the expression of bioluminescence. In Two-Component Signal Transduction pp. 431–445Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Bassler B. L., Wright M., Silverman M. R. 1994; Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286 [CrossRef]
    [Google Scholar]
  5. Belas R., Mileham A., Cohn D., Hilmen M., Simon M., Silverman M. 1982; Bacterial luminescence: isolation and expression of the luciferase genes from Vibrio harveyi. Science 218:791–793 [CrossRef]
    [Google Scholar]
  6. Dolan K. M., Greenberg E. P. 1992; Evidence that GroEL, not σ32, is involved in transcriptional regulation of the Vibrio fischeri luminescence genes in Escherichia coli. J Bacteriol 174:5132–5135
    [Google Scholar]
  7. Gill A. E. 1982 Atmosphere-Ocean Dynamics San Diego: Academic Press;
    [Google Scholar]
  8. Grossman A. D., Erickson J. W., Gross C. A. 1984; The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390 [CrossRef]
    [Google Scholar]
  9. Jensen K. F. 1993; The Escherichia coli ′wild types′ W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407
    [Google Scholar]
  10. Kato R., Hasegawa K., Hidaka Y., Kuramitsu S., Hoshino T. 1997; Characterization of a thermostable DNA photolyase from an extremely thermophilic bacterium, Thermus thermophilus HB27. J Bacteriol 179:6499–6503
    [Google Scholar]
  11. Klein G., Żmijewski M., Krzewska J., Czeczatka M., Lipińska B. 1998; Cloning and characterization of the dnaK heat shock operon of the marine bacterium Vibrio harveyi. Mol Gen Genet 259:179–189 [CrossRef]
    [Google Scholar]
  12. Little J. W., Mount D. W. 1982; The SOS regulatory system of Escherichia coli. Cell 29:11–22 [CrossRef]
    [Google Scholar]
  13. MacKenzie C., Chidambaram M., Sodergren E. J., Kaplan S., Weinstock G. M. 1995; DNA repair mutants of Rhodobacter sphaeroides. J Bacteriol 177:3027–3035
    [Google Scholar]
  14. Makemson J. C. 1986; Luciferase-dependent oxygen consumption by bioluminescent Vibrio. J Bacteriol 165:461–466
    [Google Scholar]
  15. Martin M., Showalter R., Silverman M. 1989; Identification of a locus controlling expression of luminescence genes in Vibrio harveyi. J Bacteriol 171:2406–2414
    [Google Scholar]
  16. Meighen E. A. 1994; Genetics of bacterial bioluminescence. Annu Rev Genet 28:117–139 [CrossRef]
    [Google Scholar]
  17. Miyamoto C. M., Boylan M., Graham A. F., Meighen E. A. 1988; Organization of the lux structural genes of Vibrio harveyi. Expression under the T7 bacteriophage promoter, mRNA analysis, and nucleotide sequence of the luxD gene. J Biol Chem 263:13393–13399
    [Google Scholar]
  18. Morin J. G., Harrington A., Nealson K., Krieger N., Baldwin T. O., Hastings J. W. 1975; Light for all reasons: versatility in the behavioral repertoire of the flashlight fish. Science 190:74–76 [CrossRef]
    [Google Scholar]
  19. Mount D. W., Low K. B., Edmiston S. J. 1972; Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations. J Bacteriol 112:886–893
    [Google Scholar]
  20. Nealson K. H., Hastings J. W. 1979; Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518
    [Google Scholar]
  21. Rosner J. L. 1972; Formation, induction, and curing of bacteriophage P1 lysogens. Virology 49:679–689
    [Google Scholar]
  22. Salby M. L. 1996 Fundamentals of Atmospheric Physics San Diego: Academic Press;
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sancar G. B., Jorns M. S., Payne G., Fluke D. J., Rupert C. S., Sancar A. 1987; Action mechanism of Escherichia coli DNA photolyase. III. Photolysis of the enzyme-substrate complex and the absolute action spectrum. J Biol Chem 262:492–498
    [Google Scholar]
  25. Shadel G. S., Devine J. H., Baldwin T. O. 1990; Control of the lux regulon of Vibrio fischeri. J Biolumin Chemilumin 5:99–106 [CrossRef]
    [Google Scholar]
  26. Showalter R. E., Martin M. O., Silverman M. R. 1990; Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi. J Bacteriol 172:2946–2954
    [Google Scholar]
  27. Swift S., Throup J., Bycroft B., Williams P., Stewart G. 1998; Quorum sensing: bacterial cell-cell signaling from bioluminescence to pathogenicity. In Molecular Microbiology pp. 185–207Edited by Busby S. J. W., Thomas C. M., Brown N. L. Berlin & Heidelberg: Springer;
    [Google Scholar]
  28. Ulitzur S. 1989; The regulatory control of the bacterial luminescence system – a new view. J Biolumin Chemilumin 4:317–325 [CrossRef]
    [Google Scholar]
  29. Ulitzur S., Kuhn J. 1988; The transcription of bacterial luminescence is regulated by sigma 32. J Biolumin Chemilumin 2:91–93
    [Google Scholar]
  30. Wallace J. M. 1977 Atmospheric Science San Diego: Academic Press;
    [Google Scholar]
  31. Węgrzyn G., Taylor K. 1992; Inheritance of the replication complex by one of two daughter copies during λ plasmid replication in Escherichia coli. J Mol Biol 226:681–688 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-283
Loading
/content/journal/micro/10.1099/00221287-146-2-283
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error