1887

Abstract

Transport systems for C-dicarboxylates, such as malate, fumarate and succinate, are poorly understood in Gram-positive bacteria. The whole genome sequence of revealed two genes, and , whose deduced products are highly homologous to binding proteins and transporters for C-dicarboxylates in Gram-negative bacteria. Between and , genes and encoding a sensor–regulator pair, were located. Inactivation of each one of the genes caused a deficiency in utilization of fumarate or succinate but not of malate. Expression of , encoding a putative transporter, was stimulated in a minimal salt medium containing 005% yeast extract but repressed by the addition of malate to the medium. Inactivation of the putative sensor–regulator pair or solute-binding protein, or , caused complete loss of expression. The utilization of fumarate and stimulation of expression resumed in a null mutant in which were overproduced. Based on these observations, together with analysis of the sequence similarities of the deduced product, we conclude that YdbH is a C-dicarboxylate-transport protein and its expression is regulated by a C-dicarboxylate sensor kinase–regulator pair, YdbF and YdbG. Furthermore, it is suggested that YdbE does not directly participate in transport of C-dicarboxylates, but plays a sensory role in the two-component system, giving rise to specificity or increased efficiency to the system. Deletion analysis of the promoter region of revealed that a direct repeat sequence was required for the activation of expression. A catabolite-responsive element (CRE) was also found in the −10 region of the promoter, suggesting negative regulation by a CRE-binding protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-263
2000-02-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460263a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-263&mimeType=html&fmt=ahah

References

  1. Ankenbauer R. G., Nester E. W. 1990; Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J Bacteriol 172:6442–6446
    [Google Scholar]
  2. Antelmann H., Bernhardt J., Schmid R., Mach H., Völker U., Hecker M. 1997; First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 18:1451–1463 [CrossRef]
    [Google Scholar]
  3. Boorsma A., van der Rest M. E., Lolkema J. S., Konings W. N. 1996; Secondary transporters for citrate and the Mg2+–citrate complex in Bacillus subtilis are homologous proteins. J Bacteriol 178:6216–6222
    [Google Scholar]
  4. Cangelosi G. A., Ankenbauer R. G., Nester E. W. 1990; Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 87:6708–6712 [CrossRef]
    [Google Scholar]
  5. Carlsson P., Hederstedt L. 1987; Bacillus subtilis citM, the structural gene for dihydrolipoamide transsuccinylase: cloning and expression in Escherichia coli. Gene 61:217–224 [CrossRef]
    [Google Scholar]
  6. Engelke T., Jagadish M. N., Pühler A. 1987; Biochemical and genetical analysis of Rhizobium meliloti mutants defective in C4-dicarboxylate transport. J Gen Microbiol 133:3019–3029
    [Google Scholar]
  7. Finan T. M., Oresnik I., Bottacin A. 1983; Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol 154:1403–1413
    [Google Scholar]
  8. Fortnagel P., Freese E. 1968; Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol 95:1431–1438
    [Google Scholar]
  9. Forward J. A., Behrendt M. C., Wyborn N. R., Cross R., Kelly D. J. 1997; TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol 179:5482–5493
    [Google Scholar]
  10. Fournier R. E., Pardee A. B. 1974; Evidence for inducible, l-malate binding proteins in the membrane of Bacillus subtilis: identification of presumptive components of the C4-dicarboxylate transport systems. J Biol Chem 249:5948–5954
    [Google Scholar]
  11. Fujita Y., Miwa Y., Galinier A., Deutscher J. 1995; Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17:953–960 [CrossRef]
    [Google Scholar]
  12. Ghei O. K., Kay W. W. 1975; Regulation of C4-dicarboxylic acid transport in Bacillus subtilis. Can J Microbiol 21:527–536 [CrossRef]
    [Google Scholar]
  13. Gilson E., Alloing G., Schmidt T., Claverys J. P., Dudler R., Hofnung M. 1988; Evidence for high affinity binding-protein dependent transport systems in gram-positive bacteria and in Mycoplasma. EMBO J 7:3971–3974
    [Google Scholar]
  14. Golby P., Davies S., Kelly D. J., Guest J. R., Andrews S. C. 1999; Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS–DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli. J Bacteriol 181:1238–1248
    [Google Scholar]
  15. Hamblin M. J., Shaw J. G., Kelly D. J. 1993; Sequence analysis and interposon mutagenesis of a sensor-kinase (DctS) and response-regulator (DctR) controlling synthesis of the high-affinity C4-dicarboxylate transport system in Rhodobacter capsulatus. Mol Gen Genet 237:215–224
    [Google Scholar]
  16. Heijne G. V. 1989; The structure of signal peptidases from bacterial lipoproteins. Protein Eng 2:531–534 [CrossRef]
    [Google Scholar]
  17. Henkin T. M. 1996; The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol Lett 135:9–15 [CrossRef]
    [Google Scholar]
  18. Hueck C. J., Hillen W. 1995; Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria?. Mol Microbiol 15:395–401 [CrossRef]
    [Google Scholar]
  19. Hueck C. J., Hillen W., Saier M. H. Jr 1994; Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol 145:503–518 [CrossRef]
    [Google Scholar]
  20. Igo M. M., Losick R. 1986; Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol 191:615–624 [CrossRef]
    [Google Scholar]
  21. Itaya M. 1992; Construction of a novel tetracycline resistance gene cassette useful as a marker on the Bacillus subtilis chromosome. Biosci Biotechnol Biochem 56:685–686 [CrossRef]
    [Google Scholar]
  22. Jording D., Sharma P. K., Schmidt R., Engelke T., Uhde C., Pühler A. 1992; Regulatory aspects of the C4-dicarboxylate transport in Rhizobium meliloti – transcriptional activation and dependence on effective symbiosis. J Plant Physiol 141:18–27
    [Google Scholar]
  23. Kawai S., Suzuki H., Yamamoto K., Kumagai H. 1997; Characterization of the l-malate permease gene (maeP) of Streptococcus bovis ATCC 15352. J Bacteriol 179:4056–4060
    [Google Scholar]
  24. Kawamura F., Saito H., Ikeda Y. 1980; Bacteriophage ϕ1 as a gene-cloning vector in Bacillus subtilis. Mol Gen Genet 180:259–266 [CrossRef]
    [Google Scholar]
  25. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  26. Moriya S., Tsujikawa E., Hassan A. K., Asai K., Kodama T., Ogasawara N. 1998; A Bacillus subtilis gene encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol Microbiol 29:179–187 [CrossRef]
    [Google Scholar]
  27. Nanamiya H., Ohashi Y., Asai K., Moriya S., Ogasawara N., Fujita M., Sadaie Y., Kawamura F. 1998; ClpC regulates the fate of a sporulation initiation sigma factor, σH protein, in Bacillus subtilis at elevated temperatures. Mol Microbiol 29:505–513 [CrossRef]
    [Google Scholar]
  28. Price C. W., Gitt M. A., Doi R. H. 1983; Isolation and physical mapping of the gene encoding the major sigma factor of Bacillus subtilis RNA polymerase. Proc Natl Acad Sci USA 80:4074–4078 [CrossRef]
    [Google Scholar]
  29. Reid C. J., Poole P. S. 1998; Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum. J Bacteriol 180:2660–2669
    [Google Scholar]
  30. Ronson C. W., Astwood P. M., Nixon B. T., Ausubel F. M. 1987; Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products. Nucleic Acids Res 15:7921–7934 [CrossRef]
    [Google Scholar]
  31. Schaeffer P., Millet J., Aubert J.-P. 1965; Catabolite repression of bacterial sporulation. Proc Natl Acad Sci USA 54:704–711 [CrossRef]
    [Google Scholar]
  32. Shaw J. G., Hamblin M. J., Kelly D. J. 1991; Purification, characterization and nucleotide sequence of the periplasmic C4-dicarboxylate-binding protein (DctP) from Rhodobacter capsulatus. Mol Microbiol 5:3055–3062 [CrossRef]
    [Google Scholar]
  33. Shimoda N., Toyoda Y. A., Aoki S., Machida Y. 1993; Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 268:26552–26558
    [Google Scholar]
  34. Six S., Andrews S. C., Unden G., Guest J. R. 1994; Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J Bacteriol 176:6470–6478
    [Google Scholar]
  35. Sofia H. J., Burland V., Daniels D. L., Plunkett G. III, Blattner F. R. 1994; Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76·0 to 81·5 minutes. Nucleic Acids Res 22:2576–2586 [CrossRef]
    [Google Scholar]
  36. Stahl M. L., Ferrari E. 1984; Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J Bacteriol 158:411–418
    [Google Scholar]
  37. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  38. Walmsley A. R., Shaw J. G., Kelly D. J. 1992a; The mechanism of ligand binding to the periplasmic C4-dicarboxylate binding protein (DctP) from Rhodobacter capsulatus. J Biol Chem 267:8064–8072
    [Google Scholar]
  39. Walmsley A. R., Shaw J. G., Kelly D. J. 1992b; Perturbation of the equilibrium between open and closed conformations of the periplasmic C4-dicarboxylate binding protein from Rhodobacter capsulatus. Biochemistry 31:11175–11181 [CrossRef]
    [Google Scholar]
  40. Willecke K., Lange R. 1974; C4-dicarboxylate transport in Bacillus subtilis studied with 3-fluoro-l-erythro-malate as a substrate. J Bacteriol 117:373–378
    [Google Scholar]
  41. Yamamoto H., Murata M., Sekiguchi J. 1999; CitST two-component system regulates gene expression of citrate transport in Bacillus subtilis. In Abstracts of the 10th International Conference on BacilliBaveno, Italy p. 71
    [Google Scholar]
  42. Youngman P., Perkins J., Sandman K. 1985; Use of Tn917-mediated transcriptional gene fusions to lacZ and cat-86 for the identification and study of regulated genes in the Bacullus subtilis chromosome. In Molecular Biology of Microbial Differentiation pp. 47–54Edited by Hoch J. A., Setlow P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Zientz E., Bongaerts J., Unden G. 1998; Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system. J Bacteriol 180:5421–5425
    [Google Scholar]
  44. Zientz E., Janausch I. G., Six S., Unden G. 1999; Functioning of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli. J Bacteriol 181:3716–3720
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-263
Loading
/content/journal/micro/10.1099/00221287-146-2-263
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error