1887

Abstract

Transport systems for C-dicarboxylates, such as malate, fumarate and succinate, are poorly understood in Gram-positive bacteria. The whole genome sequence of revealed two genes, and , whose deduced products are highly homologous to binding proteins and transporters for C-dicarboxylates in Gram-negative bacteria. Between and , genes and encoding a sensor–regulator pair, were located. Inactivation of each one of the genes caused a deficiency in utilization of fumarate or succinate but not of malate. Expression of , encoding a putative transporter, was stimulated in a minimal salt medium containing 005% yeast extract but repressed by the addition of malate to the medium. Inactivation of the putative sensor–regulator pair or solute-binding protein, or , caused complete loss of expression. The utilization of fumarate and stimulation of expression resumed in a null mutant in which were overproduced. Based on these observations, together with analysis of the sequence similarities of the deduced product, we conclude that YdbH is a C-dicarboxylate-transport protein and its expression is regulated by a C-dicarboxylate sensor kinase–regulator pair, YdbF and YdbG. Furthermore, it is suggested that YdbE does not directly participate in transport of C-dicarboxylates, but plays a sensory role in the two-component system, giving rise to specificity or increased efficiency to the system. Deletion analysis of the promoter region of revealed that a direct repeat sequence was required for the activation of expression. A catabolite-responsive element (CRE) was also found in the −10 region of the promoter, suggesting negative regulation by a CRE-binding protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-263
2000-02-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460263a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-263&mimeType=html&fmt=ahah

References

  1. Ankenbauer, R. G. & Nester, E. W. ( 1990; ). Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J Bacteriol 172, 6442-6446.
    [Google Scholar]
  2. Antelmann, H., Bernhardt, J., Schmid, R., Mach, H., Völker, U. & Hecker, M. ( 1997; ). First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 18, 1451-1463.[CrossRef]
    [Google Scholar]
  3. Boorsma, A., van der Rest, M. E., Lolkema, J. S. & Konings, W. N. ( 1996; ). Secondary transporters for citrate and the Mg2+–citrate complex in Bacillus subtilis are homologous proteins. J Bacteriol 178, 6216-6222.
    [Google Scholar]
  4. Cangelosi, G. A., Ankenbauer, R. G. & Nester, E. W. ( 1990; ). Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 87, 6708-6712.[CrossRef]
    [Google Scholar]
  5. Carlsson, P. & Hederstedt, L. ( 1987; ). Bacillus subtilis citM, the structural gene for dihydrolipoamide transsuccinylase: cloning and expression in Escherichia coli. Gene 61, 217-224.[CrossRef]
    [Google Scholar]
  6. Engelke, T., Jagadish, M. N. & Pühler, A. ( 1987; ). Biochemical and genetical analysis of Rhizobium meliloti mutants defective in C4-dicarboxylate transport. J Gen Microbiol 133, 3019-3029.
    [Google Scholar]
  7. Finan, T. M., Oresnik, I. & Bottacin, A. ( 1983; ). Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol 154, 1403-1413.
    [Google Scholar]
  8. Fortnagel, P. & Freese, E. ( 1968; ). Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol 95, 1431-1438.
    [Google Scholar]
  9. Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R. & Kelly, D. J. ( 1997; ). TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol 179, 5482-5493.
    [Google Scholar]
  10. Fournier, R. E. & Pardee, A. B. ( 1974; ). Evidence for inducible, l-malate binding proteins in the membrane of Bacillus subtilis: identification of presumptive components of the C4-dicarboxylate transport systems. J Biol Chem 249, 5948-5954.
    [Google Scholar]
  11. Fujita, Y., Miwa, Y., Galinier, A. & Deutscher, J. ( 1995; ). Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17, 953-960.[CrossRef]
    [Google Scholar]
  12. Ghei, O. K. & Kay, W. W. ( 1975; ). Regulation of C4-dicarboxylic acid transport in Bacillus subtilis. Can J Microbiol 21, 527-536.[CrossRef]
    [Google Scholar]
  13. Gilson, E., Alloing, G., Schmidt, T., Claverys, J. P., Dudler, R. & Hofnung, M. ( 1988; ). Evidence for high affinity binding-protein dependent transport systems in gram-positive bacteria and in Mycoplasma. EMBO J 7, 3971-3974.
    [Google Scholar]
  14. Golby, P., Davies, S., Kelly, D. J., Guest, J. R. & Andrews, S. C. ( 1999; ). Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS–DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli. J Bacteriol 181, 1238-1248.
    [Google Scholar]
  15. Hamblin, M. J., Shaw, J. G. & Kelly, D. J. ( 1993; ). Sequence analysis and interposon mutagenesis of a sensor-kinase (DctS) and response-regulator (DctR) controlling synthesis of the high-affinity C4-dicarboxylate transport system in Rhodobacter capsulatus. Mol Gen Genet 237, 215-224.
    [Google Scholar]
  16. Heijne, G. V. ( 1989; ). The structure of signal peptidases from bacterial lipoproteins. Protein Eng 2, 531-534.[CrossRef]
    [Google Scholar]
  17. Henkin, T. M. ( 1996; ). The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol Lett 135, 9-15.[CrossRef]
    [Google Scholar]
  18. Hueck, C. J. & Hillen, W. ( 1995; ). Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol Microbiol 15, 395-401.[CrossRef]
    [Google Scholar]
  19. Hueck, C. J., Hillen, W. & Saier, M. H.Jr ( 1994; ). Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol 145, 503-518.[CrossRef]
    [Google Scholar]
  20. Igo, M. M. & Losick, R. ( 1986; ). Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol 191, 615-624.[CrossRef]
    [Google Scholar]
  21. Itaya, M. ( 1992; ). Construction of a novel tetracycline resistance gene cassette useful as a marker on the Bacillus subtilis chromosome. Biosci Biotechnol Biochem 56, 685-686.[CrossRef]
    [Google Scholar]
  22. Jording, D., Sharma, P. K., Schmidt, R., Engelke, T., Uhde, C. & Pühler, A. ( 1992; ). Regulatory aspects of the C4-dicarboxylate transport in Rhizobium meliloti – transcriptional activation and dependence on effective symbiosis. J Plant Physiol 141, 18-27.
    [Google Scholar]
  23. Kawai, S., Suzuki, H., Yamamoto, K. & Kumagai, H. ( 1997; ). Characterization of the l-malate permease gene (maeP) of Streptococcus bovis ATCC 15352. J Bacteriol 179, 4056-4060.
    [Google Scholar]
  24. Kawamura, F., Saito, H. & Ikeda, Y. ( 1980; ). Bacteriophage ϕ1 as a gene-cloning vector in Bacillus subtilis. Mol Gen Genet 180, 259-266.[CrossRef]
    [Google Scholar]
  25. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  26. Moriya, S., Tsujikawa, E., Hassan, A. K., Asai, K., Kodama, T. & Ogasawara, N. ( 1998; ). A Bacillus subtilis gene encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol Microbiol 29, 179-187.[CrossRef]
    [Google Scholar]
  27. Nanamiya, H., Ohashi, Y., Asai, K., Moriya, S., Ogasawara, N., Fujita, M., Sadaie, Y. & Kawamura, F. ( 1998; ). ClpC regulates the fate of a sporulation initiation sigma factor, σH protein, in Bacillus subtilis at elevated temperatures. Mol Microbiol 29, 505-513.[CrossRef]
    [Google Scholar]
  28. Price, C. W., Gitt, M. A. & Doi, R. H. ( 1983; ). Isolation and physical mapping of the gene encoding the major sigma factor of Bacillus subtilis RNA polymerase. Proc Natl Acad Sci USA 80, 4074-4078.[CrossRef]
    [Google Scholar]
  29. Reid, C. J. & Poole, P. S. ( 1998; ). Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum. J Bacteriol 180, 2660-2669.
    [Google Scholar]
  30. Ronson, C. W., Astwood, P. M., Nixon, B. T. & Ausubel, F. M. ( 1987; ). Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products. Nucleic Acids Res 15, 7921-7934.[CrossRef]
    [Google Scholar]
  31. Schaeffer, P., Millet, J. & Aubert, J.-P. ( 1965; ). Catabolite repression of bacterial sporulation. Proc Natl Acad Sci USA 54, 704-711.[CrossRef]
    [Google Scholar]
  32. Shaw, J. G., Hamblin, M. J. & Kelly, D. J. ( 1991; ). Purification, characterization and nucleotide sequence of the periplasmic C4-dicarboxylate-binding protein (DctP) from Rhodobacter capsulatus. Mol Microbiol 5, 3055-3062.[CrossRef]
    [Google Scholar]
  33. Shimoda, N., Toyoda, Y. A., Aoki, S. & Machida, Y. ( 1993; ). Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 268, 26552-26558.
    [Google Scholar]
  34. Six, S., Andrews, S. C., Unden, G. & Guest, J. R. ( 1994; ). Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J Bacteriol 176, 6470-6478.
    [Google Scholar]
  35. Sofia, H. J., Burland, V., Daniels, D. L., Plunkett, G.III & Blattner, F. R. ( 1994; ). Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76·0 to 81·5 minutes. Nucleic Acids Res 22, 2576-2586.[CrossRef]
    [Google Scholar]
  36. Stahl, M. L. & Ferrari, E. ( 1984; ). Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J Bacteriol 158, 411-418.
    [Google Scholar]
  37. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097-3104.[CrossRef]
    [Google Scholar]
  38. Walmsley, A. R., Shaw, J. G. & Kelly, D. J. ( 1992a; ). The mechanism of ligand binding to the periplasmic C4-dicarboxylate binding protein (DctP) from Rhodobacter capsulatus. J Biol Chem 267, 8064-8072.
    [Google Scholar]
  39. Walmsley, A. R., Shaw, J. G. & Kelly, D. J. ( 1992b; ). Perturbation of the equilibrium between open and closed conformations of the periplasmic C4-dicarboxylate binding protein from Rhodobacter capsulatus. Biochemistry 31, 11175-11181.[CrossRef]
    [Google Scholar]
  40. Willecke, K. & Lange, R. ( 1974; ). C4-dicarboxylate transport in Bacillus subtilis studied with 3-fluoro-l-erythro-malate as a substrate. J Bacteriol 117, 373-378.
    [Google Scholar]
  41. Yamamoto, H., Murata, M. & Sekiguchi, J. (1999). CitST two-component system regulates gene expression of citrate transport in Bacillus subtilis. In Abstracts of the 10th International Conference on Bacilli, Baveno, Italy, p. 71.
  42. Youngman, P., Perkins, J. & Sandman, K. ( 1985; ). Use of Tn917-mediated transcriptional gene fusions to lacZ and cat-86 for the identification and study of regulated genes in the Bacullus subtilis chromosome. In Molecular Biology of Microbial Differentiation, pp. 47-54. Edited by J. A. Hoch & P. Setlow. Washington, DC: American Society for Microbiology.
  43. Zientz, E., Bongaerts, J. & Unden, G. ( 1998; ). Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system. J Bacteriol 180, 5421-5425.
    [Google Scholar]
  44. Zientz, E., Janausch, I. G., Six, S. & Unden, G. ( 1999; ). Functioning of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli. J Bacteriol 181, 3716-3720.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-263
Loading
/content/journal/micro/10.1099/00221287-146-2-263
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error