1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-249
2000-02-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460249a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-249&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaeffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1991; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Archibald A. R., Hancock I. C., Harwood C. R. 1993; Cell wall structure, synthesis, and turnover. In Bacillus subtilis and other Gram-positive Bacteria pp. 381–410Edited by Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Atrih A., Foster S. J. 1999; The role of peptidoglycan structure and structural dynamics during dormancy and germination. Antonie Leeuwenhoek 75:299–307 [CrossRef]
    [Google Scholar]
  4. Atrih A., Zöllner P., Allmaier G., Foster S. J. 1996; Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J Bacteriol 178:6173–6183
    [Google Scholar]
  5. Atrih A., Zöllner P., Allmaier G., Williamson M. P., Foster S. J. 1998; Peptidoglycan structural dynamics during germination of Bacillus subtilis 168 endospores. J Bacteriol 180:4603–4612
    [Google Scholar]
  6. Atrih A., Bacher G., Allmaier G., Williamson M. P., Foster S. J. 1999; Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and the role of PBP 5 in its maturation. J Bacteriol 181:3956–3968
    [Google Scholar]
  7. Baba T., Schneewind O. 1996; Target cell specificity of a bacteriocin molecule: a C-terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. EMBO J 15:4789–4797
    [Google Scholar]
  8. Baba T., Schneewind O. 1998; Targeting of murolytic enzymes to the cell-division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. EMBO J 17:4639–4646 [CrossRef]
    [Google Scholar]
  9. Blackman S. A. 1998 The role of autolysins during vegetative growth of Bacillus subtilis 168 PhD thesis University of Sheffield;
    [Google Scholar]
  10. Blackman S. A., Smith T. J., Foster S. J. 1998; The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144:73–82 [CrossRef]
    [Google Scholar]
  11. Boland F. M., Atrih A., Chirakkal H., Foster S. J., Moir A. 2000; Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology 146:57–64
    [Google Scholar]
  12. Braun L., Dramsi S., Dehoux P., Bierne H., Lindahl G., Cossart P. 1997; InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 25:285–294 [CrossRef]
    [Google Scholar]
  13. Brunskill E. W., Bayles K. W. 1996; Identification of LytSR-regulated genes from Staphylococcus aureus. J Bacteriol 178:5810–5812
    [Google Scholar]
  14. Chen Y., Miyata S., Makino S., Moriyama R. 1997; Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene. J Bacteriol 179:3181–3187
    [Google Scholar]
  15. Cheung H. Y., Freese E. 1985; Monovalent cations enable cell-wall turnover of the turnover-deficient lyt-15 mutant of Bacillus subtilis. J Bacteriol 161:1222–1225
    [Google Scholar]
  16. Clarke A. J. 1993; Extent of peptidoglycan O-acetylation in the tribe Proteae. J Bacteriol 175:4550–4553
    [Google Scholar]
  17. Clarke-Sturman A. J., Archibald A. R., Hancock I. C., Harwood C. R., Merad T., Hobot J. A. 1989; Cell wall assembly in Bacillus subtilis: partial conversion of polar wall material and the effect of growth conditions on the pattern of incorporation of new material at the polar caps. J Gen Microbiol 135:657–665
    [Google Scholar]
  18. Dijkstra A. J., Keck W. 1996; Peptidoglycan as a barrier to trans-envelope transport. J Bacteriol 178:5555–5562
    [Google Scholar]
  19. Doi R. H. 1989; Sporulation and germination. In Bacillus pp. 169–215Edited by Harwood C. R. London: Plenum;
    [Google Scholar]
  20. Errington J. 1993; Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57:1–33
    [Google Scholar]
  21. Fan D. P., Beckman M. M. 1971; Mutants of Bacillus subtilis demonstrating the requirement of lysis for growth. J Bacteriol 105:629–636
    [Google Scholar]
  22. Fischer W., Rosel P., Koch H. U. 1981; Effect of alanine ester substitution and other structural features of lipoteichoic acid on their inhibitory activity against autolysins of Staphylococcus aureus. J Bacteriol 146:467–475
    [Google Scholar]
  23. Foster S. J. 1991; Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol 137:1987–1998 [CrossRef]
    [Google Scholar]
  24. Foster S. J. 1992; Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J Bacteriol 174:464–470
    [Google Scholar]
  25. Foster S. J. 1993; Analysis of Bacillus subtilis 168 prophage-associated lytic enzymes: identification and characterization of CWLA-related prophage proteins. J Gen Microbiol 139:3177–3184 [CrossRef]
    [Google Scholar]
  26. Foster S. J. 1994; The role and regulation of cell wall structural dynamics during differentiation of endospore-forming bacteria. J Appl Bacteriol 76:S25–S39 [CrossRef]
    [Google Scholar]
  27. Foster S. J. 1995; Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol 177:5723–5725
    [Google Scholar]
  28. Foster S. J., Johnstone K. 1990; Pulling the trigger – the mechanism of bacterial spore germination. Mol Microbiol 4:137–141 [CrossRef]
    [Google Scholar]
  29. Ghuysen J.-M. 1991; Serine β-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45:37–67 [CrossRef]
    [Google Scholar]
  30. Ghuysen J.-M., Tipper D. J., Strominger J. L. 1966; Enzymes that degrade bacterial cell walls. Methods Enzymol 8:685–699
    [Google Scholar]
  31. Ghuysen J.-M., Lamotte-Brasseur J., Joris B., Shockman G. D. 1994; Binding site-shaped repeated sequences of bacterial wall peptidoglycan hydrolases. FEBS Lett 342:23–28 [CrossRef]
    [Google Scholar]
  32. Graham L. L., Beveridge T. J. 1994; Structural differentiation of the Bacillus subtilis 168 cell wall. J Bacteriol 176:1413–1423
    [Google Scholar]
  33. Helmann J. D., Marquez L. M., Chamberlin M. J. 1988; Cloning, sequencing and disruption of the Bacillus subtilis σ28 gene. J Bacteriol 170:1568–1574
    [Google Scholar]
  34. Herbold D. R., Glaser L. 1975; Bacillus subtilis N-acetylmuramic acid l-alanine amidase. J Biol Chem 250:1676–1682
    [Google Scholar]
  35. Höltje J. V., Mirelman D., Sharon N., Schwartz U. 1975; Novel type of murein transglycosylase in Escherichia coli. J Bacteriol 124:1067–1076
    [Google Scholar]
  36. Hourdou M.-L., Duez C., Joris B., Vacheron M.-J., Guinand M., Michel G., Ghuysen J.-M. 1992; Cloning and nucleotide sequence of the gene encoding the γ-d-glutamyl-l-diamino acid endopeptidase II of Bacillus sphaericus. FEMS Microbiol Lett 91:165–170
    [Google Scholar]
  37. Hourdou M.-L., Guinand M., Vacheron M.-J.7 other authors 1993; Characterization of the sporulation-related γ-d-glutamyl-(l)meso-diaminopimelic-acid-hydrolysing peptidase I of Bacillus sphaericus ACTC 9602 as a member of the metallo(zinc) carboxypeptidase A family. Biochem J 292:563–570
    [Google Scholar]
  38. Illing N., Errington J. 1991; Genetic regulation of morphogenesis in Bacillus subtilis: roles of σE and σF in prespore engulfment. J Bacteriol 173:3159–3169
    [Google Scholar]
  39. Ishikawa S., Hara Y., Ohnishi R., Sekiguchi J. 1998a; Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J Bacteriol 180:2549–2555
    [Google Scholar]
  40. Ishikawa S., Yamane K., Sekiguchi J. 1998b; Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 180:1375–1380
    [Google Scholar]
  41. Jolliffe L. K., Doyle R. J., Streips U. N. 1981; The energised membrane and cellular autolysis in Bacillus subtilis. Cell 25:753–763 [CrossRef]
    [Google Scholar]
  42. Joris B., Englebert S., Chu C.-P., Kariyama R., Daneo-Moore L., Shockman G. D., Ghuysen J.-M. 1992; Modular design of the Enterococcus hirae muramidase 2 and Streptococcus faecalis autolysin. FEMS Microbiol Lett 91:257–264 [CrossRef]
    [Google Scholar]
  43. Kemper M. A., Urrutia M. M., Beveridge T. J., Koch A. L., Doyle R. J. 1993; Proton motive force may regulate cell-wall-associated enzymes of Bacillus subtilis. J Bacteriol 175:5690–5696
    [Google Scholar]
  44. Koch A. L. 1995 Bacterial Growth and Form New York: Chapman & Hall;
    [Google Scholar]
  45. Koch A. L., Kirchner G., Doyle R. J., Streips U. N. 1985; How does Bacillus split its septum right down the middle?. Ann Inst Pasteur Microbiol 136:91–98
    [Google Scholar]
  46. Krogh S., Jorgensen S. T., Devine K. M. 1998; Lysis genes of the Bacillus subtilis defective prophage PBSX. J Bacteriol 180:2110–2117
    [Google Scholar]
  47. Kuchler K. 1993; Unusual routes of protein secretion: the easy way out. Trends Cell Biol 3:421–426 [CrossRef]
    [Google Scholar]
  48. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  49. Kuroda A., Sekiguchi J. 1990; Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene. J Gen Microbiol 136:2209–2216 [CrossRef]
    [Google Scholar]
  50. Kuroda A., Sekiguchi J. 1991; Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J Bacteriol 173:7304–7312
    [Google Scholar]
  51. Kuroda A., Sekiguchi J. 1993; High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation. J Bacteriol 175:795–801
    [Google Scholar]
  52. Kuroda A., Rashid M. H., Sekiguchi J. 1992; Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. J Gen Microbiol 138:1067–1076 [CrossRef]
    [Google Scholar]
  53. Kuroda A., Asami Y., Sekiguchi J. 1993; Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. J Bacteriol 175:6260–6268
    [Google Scholar]
  54. Lazarevic V., Margot P., Soldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961 [CrossRef]
    [Google Scholar]
  55. Loessner M. J., Wendlinger G., Scherer S. 1995; Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within siphoviral lysis cassettes. Mol Microbiol 16:1231–1241 [CrossRef]
    [Google Scholar]
  56. Londoño-Vallejo J.-A., Fréhel C., Stragier P. 1997; spoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol Microbiol 24:29–39 [CrossRef]
    [Google Scholar]
  57. Longchamp P. F., Mauël C., Karamata D. 1994; Lytic enzymes associated with defective prophages of Bacillus subtilis: sequencing and characterization of the region comprising the N-acetylmuramoyl-l-alanine amidase gene of prophage PBSX. Microbiology 140:1855–1867 [CrossRef]
    [Google Scholar]
  58. Losick R., Stragier P. 1992; Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355:601–604 [CrossRef]
    [Google Scholar]
  59. McLaughlan A. M., Foster S. J. 1998; Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. Microbiology 144:1359–1367 [CrossRef]
    [Google Scholar]
  60. Makino S., Ito N., Inoue T., Miyata S., Moriyama R. 1994; A spore-lytic enzyme released from Bacillus cereus spores during germination. Microbiology 140:1403–1410 [CrossRef]
    [Google Scholar]
  61. Margot P., Karamata D. 1992; Identification of the structural genes for N-acetylmuramoyl-l-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol Gen Genet 232:359–366
    [Google Scholar]
  62. Margot P., Mauël C., Karamata D. 1994; The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12:535–545 [CrossRef]
    [Google Scholar]
  63. Margot P., Whalen M., Gholamhoseinian A., Piggot P., Karamata D. 1998; The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J Bacteriol 180:749–752
    [Google Scholar]
  64. Margot P., Pagni M., Karamata D. 1999; Bacillus subtilis 168 gene lytF encodes a γ-d–glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD. Microbiology 145:57–65 [CrossRef]
    [Google Scholar]
  65. Mauël C., Bauduret A., Chervet C., Beggah S., Karamata D. 1995; In Bacillus subtilis 168, teichoic acid of the cross-wall may be different from that of the cylinder: a hypothesis based on transcriptional analysis of tag genes. Microbiology 141:2379–2389 [CrossRef]
    [Google Scholar]
  66. Merad T., Archibald A. R., Hancock I. C., Harwood C. R., Hobot J. A. 1989; Cell wall assembly in Bacillus subtilis: visualisation of old and new wall material by electron microscopic examination of samples stained selectively for teichoic acid and teichuronic acid. J Gen Microbiol 135:645–655
    [Google Scholar]
  67. Merchante R., Pooley H. M., Karamata D. 1995; A periplasm in Bacillus subtilis. J Bacteriol 177:6176–6183
    [Google Scholar]
  68. Moriyama R., Hattori A., Miyata S., Kudoh S., Makino S. 1996; A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to l-alanine mediated germination. J Bacteriol 178:6059–6063
    [Google Scholar]
  69. Nugroho F. A., Yamamoto H., Kobayashi Y., Sekiguchi J. 1999; Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis. J Bacteriol 181:6230–6237
    [Google Scholar]
  70. Ohnishi R., Ishikawa S., Sekiguchi J. 1999; Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J Bacteriol 181:3178–3184
    [Google Scholar]
  71. Oshida T., Sugai M., Komatsuzawa H., Hong Y. M., Suginaka H., Tomasz A. 1995; A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-β-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci USA 92:285–289 [CrossRef]
    [Google Scholar]
  72. Pooley H. M. 1976; Layered distribution, according to age, within the cell wall of Bacillus subtilis. J Bacteriol 125:1139–1147
    [Google Scholar]
  73. Pooley H., Karamata D. 1984a; Flagellation and the control of autolysins in Bacillus subtilis. In Microbial Cell Wall Synthesis and Autolysis pp. 13–19Edited by Nombela C. Amsterdam: Elsevier;
    [Google Scholar]
  74. Pooley H., Karamata D. 1984b; Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis. J Bacteriol 160:1123–1129
    [Google Scholar]
  75. Popham D. L., Helin J., Costello C. E., Setlow P. 1996a; Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not spore germination. Proc Natl Acad Sci USA 93:15405–15410 [CrossRef]
    [Google Scholar]
  76. Popham D. L., Helin J., Costello C. E., Setlow P. 1996b; Analysis of the peptidoglycan structure of Bacillus subtilis endospores. J Bacteriol 178:6451–6458
    [Google Scholar]
  77. Popham D. L., Gilmore M. E., Setlow P. 1999; Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. J Bacteriol 181:126–132
    [Google Scholar]
  78. Rashid M. H., Sekiguchi J. 1996; flaD (sinR) mutations affect SigD-dependent functions at multiple points in Bacillus subtilis. J Bacteriol 178:6640–6643
    [Google Scholar]
  79. Rashid M. H., Sato N., Sekiguchi J. 1995a; Analysis of the minor autolysins of Bacillus subtilis during vegetative growth by zymography. FEMS Microbiol Lett 132:131–137 [CrossRef]
    [Google Scholar]
  80. Rashid M. H., Mori M., Sekiguchi J. 1995b; Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterisation. Microbiology 141:2391–2404 [CrossRef]
    [Google Scholar]
  81. Recsei P. A., Gruss A. D., Novick R. P. 1987; Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc Natl Acad Sci USA 84:1127–1131 [CrossRef]
    [Google Scholar]
  82. Regamey A., Karamata D. 1998; The N-acetylmuramoyl-l-alanine amidase encoded by the Bacillus subtilis 168 prophage SPβ. Microbiology 144:885–893 [CrossRef]
    [Google Scholar]
  83. Rogers H. J., Perkins H. R., Ward J. B. 1980; The bacterial autolysins. Microbial Cell Walls and Membranes191–214 London: Chapman & Hall;
    [Google Scholar]
  84. Rogers H. J., Taylor C., Rayter S., Ward J. B. 1984; Purification and properties of an autolytic endo-β-N-glucosaminidase and the N-acetylmuramyl-l-alanine amidase from Bacillus subtilis strain 168. J Gen Microbiol 130:2395–2402
    [Google Scholar]
  85. Schindler C. A., Schuhardt V. T. 1964; Lysostaphin: a new bacteriolytic agent for the staphylococci. Proc Natl Acad Sci USA 51:414–421 [CrossRef]
    [Google Scholar]
  86. Sekiguchi J., Akeo K., Yamamoto H., Khasnov F. K., Alonso J. C., Kuroda A. 1995; Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J Bacteriol 177:5582–5589
    [Google Scholar]
  87. Sheenan M. M., Garcı́a J. L., López R., Garcı́a P. 1997; The lytic enzyme of the pneumococcal phage Dp-1: a chimeric lysin of intergeneric origin. Mol Microbiol 25:717–725 [CrossRef]
    [Google Scholar]
  88. Shockman G. D., Höltje J.-V. 1994; Microbial peptidoglycan (murein) hydrolases. In Bacterial Cell Wall pp. 131–166Edited by Ghuysen J.-M., Hakenbeck R. Amsterdam: Elsevier;
    [Google Scholar]
  89. Smith T. J., Foster S. J. 1995; Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J Bacteriol 177:3855–3862
    [Google Scholar]
  90. Smith T. J., Foster S. J. 1997; Autolysins during sporulation of Bacillus subtilis 168. FEMS Microbiol Lett 157:141–147 [CrossRef]
    [Google Scholar]
  91. Smith T. J., Blackman S. A., Foster S. J. 1996; Peptidoglycan hydrolases of Bacillus subtilis 168. Microb Drug Resist 2:113–118 [CrossRef]
    [Google Scholar]
  92. Sugai M., Komatsuzawa H., Akiyama T., Hong Y. M., Oshida T., Miyake Y., Yamaguchi T., Suginaka H. 1995; Identification of endo-β-N-acetylglucosaminidase and N-acetylmuramyl-l-alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus. J Bacteriol 177:1491–1496
    [Google Scholar]
  93. Takemaru K., Mizuno M., Sato T., Takeuchi M., Kobayashi Y. 1995; Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141:323–327 [CrossRef]
    [Google Scholar]
  94. Thunnissen A.-M. W. H., Dijkstra A. J., Kalk K. H., Rozeboom H. J., Engel H., Keck W., Dijkstra B. W. 1994; Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature 367:750–753 [CrossRef]
    [Google Scholar]
  95. Tipper D. J., Gauthier J. J. 1972; Structure of the bacterial endospore. In Spores V pp. 3–12Edited by Halvorson H. O., Hanson R. , Campbell L. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  96. Tipper D. J., Linnett P. E. 1976; Distribution of peptidoglycan synthetase activities between sporangia and forespores in sporulating cells of Bacillus sphaericus. J Bacteriol 126:213–221
    [Google Scholar]
  97. Warth A. D. 1978; Molecular structure of the bacterial spore. Adv Microbiol Physiol 17:1–47
    [Google Scholar]
  98. Wecke J., Madela K., Fischer W. 1997; The absence of d-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. Microbiology 143:2953–2960 [CrossRef]
    [Google Scholar]
  99. Wuenscher M. D., Köler S., Bubert A., Gerike U., Goebel W. 1993; The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has autolytic activity. J Bacteriol 175:3409–3501
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-249
Loading
/content/journal/micro/10.1099/00221287-146-2-249
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error