1887

Abstract

The absorption spectrum of factor F changes depending on the pH and the redox state of the cytoplasm. Specific wavelengths were used to calibrate absorption changes to allow the measurement of changes in the cytoplasmic pH in . Upon a hydrogen pulse, a rapid efflux of protons was observed. Under these energized conditions, the ΔpH amounts to 02–04 pH units at pH 66, and 06–08 pH units at pH 60. It decays within 10–20 s. In parallel, a sodium gradient is formed which has a slightly longer lifetime. Both ΔpH and ΔΨ contribute to the proton-motive force present during methanogenesis. The energy-conversion rate, as indicated by the decay of the energized state of the cell, is fastest under growth conditions, i.e. at pH 69 and at a temperature of 58 °C.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3245
2000-12-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463245a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3245&mimeType=html&fmt=ahah

References

  1. Aono R., Ito M., Horikoshi K.. 1997; Measurement of cytoplasmic pH of the alkaliphile Bacillus lentus C-125 with a fluorescent pH probe. Microbiology143:2531–2536[CrossRef]
    [Google Scholar]
  2. Bachofen R., Butsch B.. 1986; Measurement of ΔpH and electron transport activities in Methanobacterium thermoautotrophicum. Syst Appl Microbiol7:349–353[CrossRef]
    [Google Scholar]
  3. Breeuwer P., Drocourt J. L., Rombouts F. M., Abee T.. 1996; A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succimidyl ester. Appl Environ Microbiol62:178–183
    [Google Scholar]
  4. Butsch B., Bachofen R.. 1984; The membrane potential in whole cells of Methanobacterium thermoautotrophicum. . Arch Microbiol138:293–298[CrossRef]
    [Google Scholar]
  5. Cheeseman P., Toms-Wood A., Wolfe R. S.. 1972; Isolation and properties of a fluorescent compound, factor420, from Methanobacterium strain M.o.H. J Bacteriol112:527–531
    [Google Scholar]
  6. Deppenmeier U., Müller V., Gottschalk G.. 1996; Pathways of energy conservation in methanogenic archaea. Arch Microbiol165:149–163[CrossRef]
    [Google Scholar]
  7. Dybas M., Konisky J.. 1992; Energy transduction in the methanogen Methanococcus voltae is based on a sodium current. . J Bacteriol174:5575–5583
    [Google Scholar]
  8. Eirich L. D., Vogels G. D., Wolfe R. S.. 1978; Proposed structure for Coenzyme F420 from Methanobacterium. . Biochemistry17:4583–4593[CrossRef]
    [Google Scholar]
  9. Haines T. H.. 1983; Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: a hypothesis. Proc Natl Acad Sci USA80:160–164[CrossRef]
    [Google Scholar]
  10. Hausinger R. P., Orme-Johnson W. H., Walsh C.. 1985; Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen factor420. . Biochemistry24:1629–1633[CrossRef]
    [Google Scholar]
  11. Jud G., Schneider K., Bachofen R.. 1997; The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. J Ind Microbiol Biotechnol19:246–251[CrossRef]
    [Google Scholar]
  12. Kleyman T. R., Cragoe E. J.. 1988; Amiloride and its analogs as tools in the study of ion transport. J Membr Biol105:1–21[CrossRef]
    [Google Scholar]
  13. Kotyk A., Slavik J.. 1989; Intracellular pH and Its Measurement Boca Raton, FL: CRC Press;
    [Google Scholar]
  14. Kramer J. K. G., Sauer F. D., Bundle D. R.. 1988; The presence of tightly bound Na+ or K+ in glycolipids of Methanobacterium thermoautotrophicum. Biochim Biophys Acta961:285–292[CrossRef]
    [Google Scholar]
  15. Müller V., Blaut M., Gottschalk G.. 1987; Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur J Biochem162:461–466[CrossRef]
    [Google Scholar]
  16. Muth E.. 1988; Localization of the F420-reducing hydrogenase in Methanococcus voltae cells by immuno-gold technique. Arch Microbiol150:205–207[CrossRef]
    [Google Scholar]
  17. Padan E., Zilberstein D., Schuldiner S.. 1981; pH homeostasis in bacteria. Biochim Biophys Acta650:151–166[CrossRef]
    [Google Scholar]
  18. Reuter B. W., Egeler T., Schneckenburger H., Schoberth S. M.. 1986; In vivo measurement of F420 fluorescence in cultures of Methanobacterium thermoautotrophicum. J Biotechnol4:325–332[CrossRef]
    [Google Scholar]
  19. Schäfer G., Engelhard M., Müller V.. 1999; Bioenergetics of the Archaea. Microbiol Mol Biol Revs63:570–620
    [Google Scholar]
  20. Schönheit P., Beimborn D. B.. 1985; ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton gradient across the cytoplasmic membrane. . Eur J Biochem148:545–550[CrossRef]
    [Google Scholar]
  21. Schönheit P., Moll J., Thauer R. K.. 1979; Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol123:105–107[CrossRef]
    [Google Scholar]
  22. Schönheit P., Keweloh H., Thauer R. K.. 1981; Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol Lett12:347–349[CrossRef]
    [Google Scholar]
  23. Siegumfeldt H., Rechinger K. B., Jakobsen M.. 1999; Use of fluorescence ratio imaging for intracellular pH determination of individual bacterial cells in mixed cultures. Microbiology145:1703–1709[CrossRef]
    [Google Scholar]
  24. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E.. 1979; Intracellular pH measurements in Ehrlich ascites tumour cells utilizing spectroscopic probes generated in situ. Biochemistry18:2210–2218[CrossRef]
    [Google Scholar]
  25. Thomas J. A., Kolbeck P. C., Langworthy T. A.. 1982; Spectrophotometric determination of cytoplasmic and mitochondrial pH transitions using trapped pH indicators. In Intracellular pH, Its Measurement, Regulation, and Utilization in Cellular Function pp.105–123Edited by Nuccitelli R., Deamer D.. New York: A. R. Liss;
    [Google Scholar]
  26. Yassine M., Salmon J. M., Vigo J., Viallet P.. 1997; C-SNARF-1 as a pHi fluoroprobe: discrepancies between conventional and intracellular data do not result from protein interactions. J Photochem PhotobiolB 37:18–25
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3245
Loading
/content/journal/micro/10.1099/00221287-146-12-3245
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error