1887

Abstract

is a facultative intracellular pathogen that is capable of causing disease in a range of hosts. Although human salmonellosis is frequently associated with consumption of contaminated poultry and eggs, and the serotypes and are important world-wide pathogens of poultry, little is understood of the mechanisms of pathogenesis of in the chicken. Type III secretion systems play a key role in host cell invasiveness and trigger the production of pro-inflammatory cytokines during invasion of mammalian hosts. This results in a polymorphonuclear cell influx that contributes to the resulting enteritis. In this study, a chicken primary cell culture model was used to investigate the cytokine responses to entry by the broad host range serotypes and , and the host specific serotype , which rarely causes disease outside its main host, the chicken. The cytokines interleukin (IL)-1β, IL-2, IL-6 and interferon (IFN)-γ were measured by quantitative RT-PCR, and production of IL-6 and IFN-γ was also determined through bioassays. All serotypes were invasive and had little effect on the production of IFN-γ compared with non-infected cells; invasion caused a slight down-regulation of IL-2 production. For IL-1β production, infection with had little effect, whilst infection with or caused a reduction in IL-1β mRNA levels. Invasion of and caused an eight- to tenfold increase in production of the pro-inflammatory cytokine IL-6, whilst invasion by caused no increase. These findings correlate with the pathogenesis of in poultry. and invasion produces a strong inflammatory response, that may limit the spread of largely to the gut, whilst does not induce an inflammatory response and may not be limited by the immune system, leading to the severe systemic disease fowl typhoid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3217
2000-12-01
2020-04-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463217a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3217&mimeType=html&fmt=ahah

References

  1. Baird G. D., Manning E. J., Jones P. W.. 1985; Evidence for related virulence sequences in plasmids of Salmonella dublin and Salmonella typhimurium. J Gen Microbiol131:1815–1823
    [Google Scholar]
  2. Barrow P. A.. 1996; Immunity to Salmonella and other bacteria. In Poultry Immunology: Poultry Science Symposium Series pp.243–263Edited by Davison T. F., Morris T. R., Payne L. N.. Abingdon, UK: Carfax Publishing;
    [Google Scholar]
  3. Barrow P. A., Lovell M. A.. 1989; Invasion of Vero cells by Salmonella species. J Med Microbiol28:59–67[CrossRef]
    [Google Scholar]
  4. Barrow P. A., Lovell M. A.. 1990; Experimental infection of egg-laying hens with Salmonella enteritidis phage type 4. Avian Pathol20:335–348
    [Google Scholar]
  5. Barrow P. A., Huggins M. B., Lovell M. A., Simpson J. M.. 1987; Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens. Res Vet Sci42:194–199
    [Google Scholar]
  6. Barrow P. A., Huggins M. B., Lovell M. A.. 1994; Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun62:4602–4610
    [Google Scholar]
  7. Beug H., von Kirchbach A., Doderlein G., Conscience J.-F., Graf T.. 1979; Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell18:375–390[CrossRef]
    [Google Scholar]
  8. Darwin K. H., Miller V. L.. 1999; Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev12:405–428
    [Google Scholar]
  9. Digby M. R., Lowenthal J. W.. 1995; Cloning and expression of the chicken interferon-γ gene. J Interferon Cytokine Res15:939–945[CrossRef]
    [Google Scholar]
  10. Ding A. H., Nathan C. F., Stuehr D. J.. 1988; Release of reactive nitrogen intermediates from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production. . J Immunol141:2407–2412
    [Google Scholar]
  11. Eckman L., Kagnoff M., Fierer J.. 1993; Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. . Infect Immun61:4569–4574
    [Google Scholar]
  12. Galán J. E., Sansonetti P. J.. 1996; Molecular and cellular bases of Salmonella and Shigella interactions with hosts. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp.2757–2773Edited by Neidhardt F. C..others Washington DC: American Society for Microbiology;
    [Google Scholar]
  13. Hardt W.-D., Galán J. E.. 1997; A secreted Salmonella protein with homology to an avirulence determinant of plant-pathogenic bacteria. Proc Natl Acad Sci USA94:9887–9892[CrossRef]
    [Google Scholar]
  14. Henderson S. C., Bounous D. I., Lee M. D.. 1999; Early events in the pathogenesis of avian salmonellosis. Infect Immun67:3580–3586
    [Google Scholar]
  15. Hirana T.. 1994; Interleukin-6. In The Cytokine Handbook, 2nd edn. pp.145–168 Edited by Thomson A. London: Academic Press;
    [Google Scholar]
  16. Humphrey T. J.. 1999; Contamination of meat and eggs with Salmonella enterica serotype Enteritidis. In Salmonella enteritica Serotype Enteritidis in Humans and Animals pp.183–192Edited by Saeed A M. Ames IA: Iowa State University Press;
    [Google Scholar]
  17. Kaiser P., Mariani P.. 1999; Promoter sequence, exon:intron structure, and synteny of genetic location show that a chicken cytokine with T-cell proliferative activity is IL2 and not IL15. . Immunogenetics49:26–35[CrossRef]
    [Google Scholar]
  18. Kaiser P., Wain H. M., Rothwell L.. 1998; Structure of the chicken interferon-γ gene, and comparison to mammalian homologues. Gene207:25–32[CrossRef]
    [Google Scholar]
  19. Kogut M. H., McGruder E. D., Hargis B. M., Corrier D. E., DeLoach J. R.. 1994a; Dynamics of avian inflammatory response to Salmonella-immune lymphokines: changes in avian blood leukocyte populations. Inflammation18:373–388[CrossRef]
    [Google Scholar]
  20. Kogut M. H., McGruder E. D., Hargis B. M., Corrier D. E., DeLoach J. R.. 1994b; Characterization of the pattern of inflammatory cell influx in chicks following the intraperitoneal administration of live Salmonella enteritidis and Salmonella enteritidis-immune lymphokines. . Poult Sci74:8–17
    [Google Scholar]
  21. Kogut M. H., Tellez G. I., McGruder E. D., Hargis B. M., Williams J. D., Corrier D. E., DeLoach J. D.. 1994c; Heterophils are decisive components in early responses of chickens to Salmonella enteritidis infections. Microb Pathog16:141–151[CrossRef]
    [Google Scholar]
  22. Kogut M. H., McGruder E. D., Hargis B. M., Corrier D. E., DeLoach J. R.. 1995; In vivo activation of heterophil function in chickens following injection with Salmonella enteritidis-immune lymphokines. J Leukoc Biol57:56–62
    [Google Scholar]
  23. Lambrecht B., Gonze M., Meulemans G., van den Berg T. P.. 2000; Production of antibodies against chicken interferon-gamma: demonstration of neutralizing activity and development of a quantitative ELISA. . Vet Immunol Immunopathol74:137–144[CrossRef]
    [Google Scholar]
  24. Lowenthal J. W., Digby M. R., York J. J.. 1995; Production of interferon-γ by chicken T cells. J Interferon Cytokine Res15:933–938[CrossRef]
    [Google Scholar]
  25. Lynagh G. R.. 1998; The role of IL-6 in the immune response to coccidia PhD thesis University of Bristol;
    [Google Scholar]
  26. McCormick B. A., Miller S. I., Carnes D., Madara J. L.. 1995; Transepithelial signalling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis. Infect Immun63:2302–2309
    [Google Scholar]
  27. McCormick B. A., Parkos C. A., Colgan S. P., Carnes D. K., Madara J. L.. 1998; Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol160:455–466
    [Google Scholar]
  28. Marriott I., Hammond T. G., Thomas E. K., Bost K. L.. 1999; Salmonella efficiently enter and survive within cultured CD11c+ dendritic cells initiating cytokine expression. Eur J Immunol29:1107–1115[CrossRef]
    [Google Scholar]
  29. Mirold S., Rabsch W., Rohde M., Stender S., Tschäpe H., Rüssmann H., Igwe E., Hardt W.-D.. 1999; Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci USA96:9845–9850[CrossRef]
    [Google Scholar]
  30. Moody A., Sellers S., Bumstead N.. 2000; Measuring infectious bursal disease virus RNA in blood by multiplex real-time quantitative RT-PCR. . J Virol Methods85:55–64[CrossRef]
    [Google Scholar]
  31. Nagaraja K. V., Pomeroy B. S., Williams J. E.. 1991; Paratyphoid infections. In Diseases of Poultry pp.99–130Edited by Calnek B. W.. Ames, IA: University of Iowa Press;
    [Google Scholar]
  32. Nakamura K., Mitarai Y., Yoshioka M., Koizumi N., Shibahara T., Nakajima Y.. 1998; Serum levels of interleukin-6, alpha1-acid glycoprotein, and corticosterone in two-week-old chickens inoculated with Escherichia coli lipopolysaccharides. . Poult Sci77:908–911[CrossRef]
    [Google Scholar]
  33. Ochman O., Groisman E. A.. 1996; Distribution of pathogenicity islands in Salmonella spp. Infect Immun64:5410–5412
    [Google Scholar]
  34. Pomeroy B. S., Nagaraja K. V.. 1991; Fowl typhoid. In Diseases of Poultry pp.87–98Edited by Calnek B. W.. Ames, IA: University of Iowa Press;
    [Google Scholar]
  35. Smith H. W.. 1955; Observations on experimental fowl typhoid. J Comp Pathol65:37–54[CrossRef]
    [Google Scholar]
  36. Smith H. W.. 1956; The susceptibility of different chicken breeds to Salmonella gallinarum infection. . Poult Sci35:701–705[CrossRef]
    [Google Scholar]
  37. Smith H. W.. 1978; Transmissible pathogenic characteristics of invasive strains of Escherichia coli. J Am Vet Med Assoc172:601–607
    [Google Scholar]
  38. Smith H. W., Tucker J. F.. 1975; The effect of antibiotic therapy on the excretion of Salmonella typhimurium by experimentally infected chickens. J Hyg75:272–292
    [Google Scholar]
  39. van Snick J., Cayphas S., Vink A., Uyttenhove C., Coulie P. G., Rubira M. R., Simpson R. J.. 1986; Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas. . Proc Natl Acad Sci USA83:9679–9683[CrossRef]
    [Google Scholar]
  40. Snoeyenbos G. H.. 1991; Pullorum disease. In Diseases of Poultry pp.73–86Edited by Calnek B. W.. Ames, IA: University of Iowa Press;
    [Google Scholar]
  41. Sundick R. S., Gill-Dixon C.. 1997; A cloned chicken lymphokine homologous to both mammalian IL-2 and IL-15. J Immunol159:720–725
    [Google Scholar]
  42. Sung Y.-J., Hotchkiss J. H., Austric R. E., Dietert R. R.. 1991; l-Arginine dependent production of a reactive nitrogen intermediate by macrophages of a uricotelic species. J Leukoc Biol50:49–56
    [Google Scholar]
  43. Wall P. G., Ward L. R.. 1999; Epidemiology of Salmonella enterica serotype Enteritidis Phage Type 4 in England and Wales. In Salmonella enterica Serotype Enteritidis in Humans and Animals pp.19–26Edited by Saeed A. M.. Ames, IA: Iowa State University Press;
    [Google Scholar]
  44. Weining K. C., Sick C., Kaspers B., Staeheli P.. 1998; A chicken homologue of mammalian interleukin-1β: cDNA cloning and purification of active recombinant protein. Eur J Biochem258:994–1000[CrossRef]
    [Google Scholar]
  45. Weinstein D. L., O’Neil B. L., Hone D. M., Metcalf E. S.. 1998; Differential early interactions between Salmonella enterica serotype Typhi and two other pathogenic Salmonella serotypes with intestinal epithelial cells. Infect Immun66:2310–2318
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3217
Loading
/content/journal/micro/10.1099/00221287-146-12-3217
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error