Temperature regulation of protease in LS107d2 by an ECF sigma factor and a transmembrane activator

The GenBank accession numbers for the sequences reported in this paper are AF228766 and AF228767.

Free

Abstract

The production of extracellular enzymes by is important with respect to phytopathogenesis and, in the case of psychrotrophic strains, food spoilage. The production of extracellular protease has been previously reported to be dependent on temperature in psychrotrophic strains of ; production is decreased above the optimum growth temperature with a relatively small change in growth rate. In this work, a transposon mutant of LS107d2 has been isolated which, in contrast to the wild-type strain, is completely protease deficient at 29 °C, above the optimum growth temperature of 25 °C, but which produces protease at 23 °C. Further analysis revealed that this mutation is in a gene () which is part of a dicistronic operon, , in which the two genes are translationally coupled. Evidence is presented that encodes a sigma factor related to others involved in extracytoplasmic functions (ECF sigma factors) and that encodes a novel transmembrane activator of PrtI. PrtI, like PrtR, is also required for protease production at 29 °C but not at 23 °C. Analysis of the amino acid sequence of PrtR indicates that it is functionally related to a group of membrane-associated anti-sigma factors and a few transmembrane regulators, but is not significantly sequence related. Complementation analysis indicates that PrtR may also interact with sigma factors other than PrtI. The promoter region of the protease-encoding gene () in LS107d2 has been identified and has sequence features which could indicate interaction with either an ECF sigma factor or a primary sigma factor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3149
2000-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463149a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3149&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., de Crombrugghe B. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. L. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Andersson R. E. 1980; Microbial lipolysis at low temperatures. Appl Environ Microbiol 39:36–40
    [Google Scholar]
  4. Brown T. A. 1991 Molecular Biology LabFax Oxford: Bios Scientific Publishers and Blackwell Scientific Publications;
    [Google Scholar]
  5. Chi E., Bartlett D. H. 1995; An rpoE-like locus controls outer membrane protein synthesis and growth at cold temperatures and high pressures in the deep-sea bacterium Photobacterium sp. strain SS9. Mol Microbiol 17:713–726 [CrossRef]
    [Google Scholar]
  6. Cox J. M., MacRae I. C. 1989; A numerical taxonomic study of proteolytic and lipolytic psychrotrophs isolated from caprine milk. J Appl Bacteriol 66:137–152 [CrossRef]
    [Google Scholar]
  7. Duong F., Lazdunski A., Cami B., Murgier M. 1992; Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in P. aeruginosa: relationship to other secretory pathways. . Gene 121:47–54 [CrossRef]
    [Google Scholar]
  8. Gish W., States D. J. 1993; Identification of protein coding regions by database similarity search. Nat Genet 3:266–272 [CrossRef]
    [Google Scholar]
  9. Gorham H. C., McGowan S. J., Robson P. R. H., Hodgson D. A. 1996; Light-induced carotenogenesis in Myxococcus xanthus: light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR. Mol Microbiol 19:171–186 [CrossRef]
    [Google Scholar]
  10. Herrero M., De Lorenzo V., Timmis K. N. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567
    [Google Scholar]
  11. Hughes K. T., Mathee K. 1998; The anti-sigma factors. . Annu Rev Microbiol 52:231–286 [CrossRef]
    [Google Scholar]
  12. Johnson L. A., Beacham I. R., MacRae I. C., Free M. L. 1992; Degradation of triglycerides by a pseudomonad isolated from milk: molecular analysis of a lipase-encoding gene and its expression in Escherichia coli. Appl Environ Microbiol 58:1776–1779
    [Google Scholar]
  13. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [CrossRef]
    [Google Scholar]
  14. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  15. Lawrence R. C., Fryer T. F., Reiter B. 1967; Rapid method for the quantitative estimation of microbial lipases. Nature 213:1264–1265 [CrossRef]
    [Google Scholar]
  16. Liao C.-H., McCallus D. E. 1998; Biochemical and genetic characterisation of an extracellular protease from Pseudomonas fluorescens CY091. Appl Environ Microbiol 64:914–921
    [Google Scholar]
  17. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  18. McKellar R. C., Cholette H. 1987; Effect of temperature shifts on extracellular proteinase-specific mRNA pools in Pseudomonas fluorescens B52. Appl Environ Microbiol 53:1973–1976
    [Google Scholar]
  19. Maeda H., Jishage M., Nomura T., Fujita N., Ishihama A. 2000; Two extracytoplasmic function sigma subunits, σE and σFecI, of Escherichia coli: promoter selectivity and intracellular levels. . J Bacteriol 182:1181–1184 [CrossRef]
    [Google Scholar]
  20. Martin D. W., Holloway B. W., Deretic V. 1993; Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: algU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 175:1153–1164
    [Google Scholar]
  21. Martin D. W., Schurr M. J., Deretic V. 1994; Analysis of promotors controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to σE and stress response. J Bacteriol 176:6688–6696
    [Google Scholar]
  22. Mathee K., McPherson C. J., Ohman D. E. 1997; Posttranslational control of the algT (algU)-encoded σ22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 1793711–3720
    [Google Scholar]
  23. Missiakas D., Raina S. 1998; The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066 [CrossRef]
    [Google Scholar]
  24. Nakahama K., Yoshimura K., Matumoto R., Kikuchi M., Lee I. S., Hase T., Matsubara H. 1986; Cloning and sequencing of Serratia protease gene. Nucleic Acids Res 14:5843–5855 [CrossRef]
    [Google Scholar]
  25. Pemberton J. M., Penfold R. J. 1992; High frequency electroporation and maintenance of pUC and pBR-based cloning vectors in P. stutzeri. Curr Microbiol 25:25–29 [CrossRef]
    [Google Scholar]
  26. Penfold R. J., Pemberton J. M. 1992; An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118:145–146 [CrossRef]
    [Google Scholar]
  27. Pogliano J., Lynch A. S., Belin D., Linn E. C. C., Beckwith J. 1997; Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 11:1169–1182 [CrossRef]
    [Google Scholar]
  28. Rich J. R., Willis D. K. 1990; A single oligonucleotide can be used to rapidly isolate DNA sequences flanking a transposon Tn5 insertion by the polymerase chain reaction. . Nucleic Acids Res 18:6673–6676 [CrossRef]
    [Google Scholar]
  29. Richardson B. C., Te Whaiti I. E. 1978; Partial characterization of heat-stable extracellular proteases of some psychrotrophic bacteria from raw milk. N Z J Dairy Sci Technol 13:172–176
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sexton R., Gill P. R. Jr, Dowling D. N., O’Gara F. 1996; Transcriptional regulation of the iron-responsive sigma factor gene pbrA. Mol Gen Genet 250:50–58
    [Google Scholar]
  32. Suhren G. 1989; Producer microorganisms. In Enzymes of Psychrotrophs in Raw Food pp. 3–34Edited by McKellar R. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  34. Van Hove B., Staudenmaier H., Braun V. 1990; Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia coli K-12. J Bacteriol 172:6749–6758
    [Google Scholar]
  35. Wassif C., Cheek D., Belas R. 1995; Molecular analysis of a metalloprotease from Proteus mirabilis. J Bacteriol 177:5790–5798
    [Google Scholar]
  36. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.5Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Brooklyn, NY: Greene Publishing Associates and Wiley Interscience;
    [Google Scholar]
  37. Wosten M. M. S. M. 1998; Eubacterial sigma-factors. FEMS Microbiol Rev 22:127–150 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3149
Loading
/content/journal/micro/10.1099/00221287-146-12-3149
Loading

Data & Media loading...

Most cited Most Cited RSS feed