1887

Abstract

Environmental regulation of bacterial gene expression is often mediated by two-component signal transduction systems, which are themselves tightly regulated. The response regulator RegX3 and the cytoplasmic portion of the histidine kinase SenX3 from BCG were overproduced in and purified as N-terminally (His)-tagged proteins. Phosphorylation assays demonstrated autophosphorylation of the cytoplasmic portion of SenX3 and a phosphotransfer from SenX3 to RegX3, involving conserved histidine and aspartate residues, respectively. In addition, as shown by electrophoretic mobility shift assays, (His)RegX3 was able to specifically bind to the promoter region of the operon. Furthermore, operon fusion analyses indicated that the overexpression of the operon increases the activity of the promoter in . Together, these results indicate that the mycobacterial SenX3–RegX3 two-component system is positively autoregulated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3091
2000-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463091a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3091&mimeType=html&fmt=ahah

References

  1. Aiba H., Nakasai F., Mizushima S., Mizuno T. 1989; Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, results in stimulation of its DNA-binding ability. J Biochem 109:5–7
    [Google Scholar]
  2. Alex L. A., Simon M. I. 1994; Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet 10:133–138 [CrossRef]
    [Google Scholar]
  3. Bajaj V., Lucas R. L., Hwang C., Lee C. A. 1996; Co-ordinate regulation of the Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22:703–714 [CrossRef]
    [Google Scholar]
  4. Bird T. H., Grimsley J. K., Hoch J. A., Spiegelman G. B. 1996; The Bacillus subtilis response regulator SpoOA stimulates transcription of the spoIIG operon through modification of RNA polymerase promoter complexes. J Mol Biol 256:436–448 [CrossRef]
    [Google Scholar]
  5. Boucher P. E., Stibitz S. 1995; Synergistic binding of RNA polymerase and BvgA phosphate to the pertussis toxin promoter of Bordetella pertussis. J Bacteriol 177:6486–6491
    [Google Scholar]
  6. Boucher P. E., Menozzi F. D., Locht C. 1994; The modular architecture of bacterial response regulators: insights into the activation mechanism of BvgA transactivator of Bordetella pertussis. J Mol Biol 241:363–377 [CrossRef]
    [Google Scholar]
  7. Boucher P. E., Murakami K., Ishihama A., Stibitz S. 1997; Nature of DNA binding and RNA polymerase interaction of the Bordetella pertussis BvgA transcriptional activator at the fha promoter. J Bacteriol 179:1755–1763
    [Google Scholar]
  8. Bowden G. A., Georgiou G. 1990; Folding and aggregation of β-lactamase in the periplasmic space of Escherichia coli. J Biol Chem 265:16760–16766
    [Google Scholar]
  9. Cole S., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  10. Dahl J. L., Wei B., Kadner R. J. 1997; Protein phosphorylation affects binding of the Escherichia coli transcription activator UhpA to the uhpT promoter. J Biol Chem 272:1910–1919 [CrossRef]
    [Google Scholar]
  11. Forst S., Delgado J., Inouye M. 1989; Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc Natl Acad Sci USA 86:6052–6056 [CrossRef]
    [Google Scholar]
  12. Fujitaki J. M., Smith R. A. 1984; Techniques in the detection and characterization of phosphoramidate-containing proteins. Methods Enzymol 107:23–36
    [Google Scholar]
  13. Haydel S. E., Dunlap N. E., Benjamin W. H. Jr 1999; In vitro evidence of two-component system phosphorylation between the Mycobacterium tuberculosis TcR/TcrS proteins. Microb Pathog 26:195–206 [CrossRef]
    [Google Scholar]
  14. Hess J. F., Bourret R. B., Simon M. I. 1988; Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature 336:139–143 [CrossRef]
    [Google Scholar]
  15. Hoch J. A., Silhavy T. J. 1995 Two-Component Signal Transduction Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Igo M. M., Silhavy T. J. 1988; EnvZ, a transmembrane environmental sensor of Escherichia coli K-12, is phosphorylated in vitro. J Bacteriol 170:5971–5973
    [Google Scholar]
  17. Igo M. M., Ninfa A. J., Stock J. B., Silhavy T. J. 1989; Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. Genes Dev 3:1725–1734 [CrossRef]
    [Google Scholar]
  18. Jacobs W. B. Jr, Kalpana G. V., Cirillio J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R. 1991; Genetic systems for mycobacteria. Methods Enzymol 204:537–555
    [Google Scholar]
  19. Kleerebezem M., Quadri L. E., Kuipers O. P., De Vos W. M. 1997; Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 25:895–904
    [Google Scholar]
  20. Kondo H., Nakagawa A., Nishihira J., Nishimura Y., Mizuno T., Tanaka I. 1997; Escherichia coli positive regulator OmpR has a large loop structure at the putative RNA polymerase interaction site. Nat Struct Biol 4:28–31 [CrossRef]
    [Google Scholar]
  21. Kremer L., Baulard A., Estaquier J., Poulain-Godefroy O., Locht C. 1995; Green fluorescent protein as a new expression marker in mycobacteria. Mol Microbiol 17:913–922 [CrossRef]
    [Google Scholar]
  22. Li J., Kustu S., Stewart V. 1994; In vitro interaction of nitrate-responsive regulatory protein NarL with DNA target sequences in the fdnG, narG, narK and frdA operon control regions of Escherichia coli K-12. J Mol Biol 241:150–165 [CrossRef]
    [Google Scholar]
  23. Liu W., Hulett F. M. 1997; Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter. J Bacteriol 179:6302–6310
    [Google Scholar]
  24. Lynch A. S., Lin E. C. C. 1996; Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: characterization of DNA binding at target promoters. J Bacteriol 178:6238–6249
    [Google Scholar]
  25. Makino K., Shinagawa H., Amemura M., Kawamoto T., Yamada M., Nakata A. 1989; Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 210:551–559 [CrossRef]
    [Google Scholar]
  26. Martinez-Hackert E., Stock A. M. 1997; Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol 269:301–312 [CrossRef]
    [Google Scholar]
  27. Meyer M., Dimroth P., Bott M. 1997; In vitro binding of the response regulator CitB and of its carboxy-terminal domain to A+T-rich DNA target sequences in the control region of the divergent citC and citS operons of Klebsiella pneumoniae. J Mol Biol 269:719–731 [CrossRef]
    [Google Scholar]
  28. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Mukhopadhyay A. 1997; Inclusion bodies and purification of proteins in biologically active forms. Adv Biochem Eng Biotechnol 56:61–109
    [Google Scholar]
  30. Nakashima K., Kanamaru K., Aiba H., Mizuno T. 1991; Signal transduction and osmoregulation in Escherichia coli. J Biol Chem 266:10775–10780
    [Google Scholar]
  31. Ninfa A. J., Bennet R. L. 1991; Identification of the site of autophosphorylation of the bacterial protein kinase/phosphatase NRII. J Biol Chem 266:6888–6893
    [Google Scholar]
  32. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signalling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  33. Perego M., Hanstein C., Welsh K. M., Djavakhishvli T., Glaser P., Hoch J. A. 1994; Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79:1047–1055 [CrossRef]
    [Google Scholar]
  34. Porter S. C., North A. K., Wedel A. B., Kustu S. 1993; Oligomerization of NtrC at the glnA enhancer is required for transcriptional activation. Genes Dev 7:2258–2273 [CrossRef]
    [Google Scholar]
  35. Raivio T. L., Popkin D. L., Silhavy T. J. 1999; The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol 181:5263–5272
    [Google Scholar]
  36. Roberts D. L., Bennett D. W., Forst S. A. 1994; Identification of the site of phosphorylation on the osmosensor, EnvZ, of Escherichia coli. J Mol Biol 269:8728–8733
    [Google Scholar]
  37. Soncini F. C., Vescovi E. G., Groisman E. A. 1995; Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol 177:4364–4371
    [Google Scholar]
  38. Steffen S., Goyard P., Ullmann A. 1996; Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. EMBO J 15:102–109
    [Google Scholar]
  39. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  40. Stock J. B., Surette M. G., Levit M., Park P. 1995; Two-component signal transduction systems: structure-function relationships and mechanisms of catalysis. In Two-Component Signal Transduction pp. 25–52Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  41. Supply P., Magdalena J., Himpens S., Locht C. 1997; Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol 26:991–1003 [CrossRef]
    [Google Scholar]
  42. Swanson R. V., Alex L. A., Simon M. I. 1994; Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci 19:485–490 [CrossRef]
    [Google Scholar]
  43. Via L. E., Curcic R., Mudd M. H., Dhandayuthapani S., Ulmer R. J., Deretic V. 1996; Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J Bacteriol 178:3314–3321
    [Google Scholar]
  44. Weiss V., Claverie-Martin F., Magasanik B. 1992; Phosphorylation of nitrogen regulator I of Escherichia coli induces strong cooperative binding to DNA essential for activation of transcription. Proc Natl Acad Sci USA 89:5088–5092 [CrossRef]
    [Google Scholar]
  45. Wyman C., Rombel I., North A. K., Bustamante C., Kustu S. 1997; Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science 275:1658–1661 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3091
Loading
/content/journal/micro/10.1099/00221287-146-12-3091
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error